High-bandwidth Digital Content Protection

Revision 2.2 on DisplayPort

Compliance Test Specification

Revision 1.1

4 November 2016
Notice

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. USE OF THIS COMPLIANCE TEST SPECIFICATION IS PROVIDED ONLY AS A GUIDE. LICENSEES ARE RESPONSIBLE FOR ALL TESTING AND COMPLIANCE REQUIREMENTS. Intel Corporation, DCP LLC and all of its/their subsidiaries disclaim all liability for use of this document, including liability for fitness for a particular purpose; merchantability; or infringement of any proprietary rights, relating to use of information in this specification. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein. The cryptographic functions described in this specification may be subject to export control by the United States, Japanese, and/or other governments.

Copyright ©2016 Intel Corporation. Third-party brands and names are the property of their respective owners.

Acknowledgement

Teledyne Lecroy Inc. contributed to the development of this specification.

Intellectual Property

Implementation of this guideline requires a license from the Digital Content Protection, LLC.

Contact Information

Digital Content Protection, LLC
C/O VTM Group
3855 SW 153rd Dr.
Beaverton, OR 97006

Email: info@digital-cp.com
Web: www.digital-cp.com
Revision History

4 November 2016 – Version 1.1 Updating as per the other contributors comments.
Table of Contents

INTRODUCTION 7

DEFINITIONS 8

HDCP2.2 DISPLAYPORT COMPLIANCE TEST SPECIFICATION 10

1. TRANSMITTER TEST 10

1A. Downstream procedure with Receiver 10
 1A-01. Regular Procedure – With previously connected Receiver (With stored km) 11
 1A-02. Regular Procedure – With newly connected Receiver (Without stored km) 15
 1A-03. Regular Procedure – Receiver disconnect after AKE_Init 16
 1A-04. Regular Procedure – Receiver disconnect after km 17
 1A-05. Regular Procedure – Receiver disconnect after locality check 18
 1A-06. Regular Procedure – Receiver disconnect after ks 19
 1A-07. Regular Procedure – Receiver sends REAUTH_REQ after Ks 21
 1A-08. Irregular Procedure – Verify Receiver Certificate 22
 1A-09. Irregular Procedure – SRM 23
 1A-10. Irregular Procedure – Invalid H’ 24
 1A-11. Irregular Procedure – Pairing Failure 27
 1A-12. Irregular Procedure – Locality Failure 29
 1A-13. Regular Procedure – Encryption Disable Bootstrapping 31

1B. Downstream procedure with Repeater 32
 1B-01. Regular Procedure – With Repeater 33
 1B-02. Irregular Procedure – Timeout of Receiver ID list 36
 1B-03. Irregular Procedure – Verify V’ 38
 1B-04. Irregular Procedure – MAX_DEVS_EXCEEDED 39
 1B-05. Irregular Procedure – MAX CASCADE EXCEEDED 40
 1B-06. Irregular Procedure – Incorrect seq_num_V 41
 1B-07. Regular Procedure – Re-authentication on HPD 42
 1B-08. Regular Procedure – Re-authentication on REAUTH_REQ 43
 1B-09. Irregular Procedure – Rollover of seq_num_V 44
 1B-10. Irregular Procedure – Failure of Content Stream Management 46

2. RECEIVER TESTS 48
2C. **Upstream procedure with Transmitter**

- 2C-01. Regular Procedure – With transmitter
- 2C-02. Irregular Procedure – New Authentication after AKE_Init
- 2C-03. Irregular Procedure – New Authentication during Locality Check
- 2C-04. Irregular Procedure – New Authentication after SKE_Send_Eks
- 2C-05. Irregular Procedure – New Authentication during Link Synchronization
- 2C-06. Regular Procedure – Encryption Disable Bootstrapping

3. **REPEATER TESTS**

3A. **Downstream Procedure with Receiver**

- 3A-01. Regular Procedure – With previously connected Receiver (With stored k_m)
- 3A-02. Regular Procedure – With newly connected Receiver (Without stored k_m)
- 3A-03. Irregular Procedure – Verify Receiver Certificate
- 3A-04. Irregular Procedure – Invalid H’
- 3A-05. Irregular Procedure – Pairing Failure
- 3A-06. Irregular Procedure – Locality Failure

3B. **Downstream Procedure with Repeater**

- 3B-01. Regular Procedure – With Repeater
- 3B-02. Irregular Procedure – Timeout of Receiver ID list
- 3B-03. Irregular Procedure – Verify V’
- 3B-04. Irregular Procedure – MAX_DEVS_EXCEEDED
- 3B-05. Irregular Procedure – MAX_CASCADE_EXCEEDED
- 3B-06. Irregular Procedure – Rollover of seq_num_V
- 3B-07. Irregular Procedure – Failure of Content Stream Management

3C. **Upstream Procedure with Transmitter**

- 3C-01. Regular Procedure – Transmitter – DUT – Receiver
- 3C-02. Regular Procedure – Receiver Disconnect Propagation when an Active Receiver is Disconnected Downstream
- 3C-03. Regular Procedure – Receiver Connected when an Active Receiver is Connected Downstream
- 3C-04. Irregular Procedure – New Authentication after AKE_Init
- 3C-05. Irregular Procedure – New Authentication during Locality Check
- 3C-06. Irregular Procedure – New Authentication after SKE_Send_Eks
- 3C-07. Irregular Procedure – New Authentication during Link Synchronization
- 3C-08. Irregular Procedure – Rx Certificate invalid
- 3C-09. Irregular Procedure – Invalid H’
- 3C-10. Irregular Procedure – Locality Failure
□ Repeater (DUT) Connected to Transmitter (TE pseudo-Source) and Repeater (TE pseudo-Repeater) 90
3C-11. Regular Procedure – Transmitter – DUT – Repeater (With stored km) 91
3C-12. Regular Procedure – Receiver disconnect after AKE_Init 93
3C-13. Regular Procedure – Receiver disconnect after k_m 96
3C-14. Regular Procedure – Receiver disconnect after locality check 98
3C-15. Regular Procedure – Receiver disconnect after K_s 100
3C-16. Irregular Procedure – Timeout of Receiver ID list 102
3C-17. Irregular Procedure – Verify V' 103
3C-18. Irregular Procedure – DEVICE_COUNT 104
3C-19. Irregular Procedure – DEPTH 106
3C-20. Irregular Procedure – MAX_DEVS_EXCEEDED 108
3C-21. Irregular Procedure – MAX_CASCADE_EXCEEDED 109
3C-22. Regular Procedure – Repeater with zero downstream device 110
3C-23. Regular Procedure – Propagation of HDCP2_0_REPEATER_DOWNSTREAM flag 111
3C-24. Regular Procedure – Propagation of HDCP1_DEVICE_DOWNSTREAM flag 112
3C-25. Regular Procedure – Content Stream Management 113

4. REFERENCE 115
Introduction

Purpose and Scope

This document specifies test procedures that will be used to test devices for compliance with the HDCP2.2 DisplayPort Specification Revision 2.2.

Tests are specified for HDCP2.2 DP Source, HDCP2.2 DP Sink, and HDCP2.2 DP Repeater devices.

Normative References

Definitions

Acronyms and Abbreviations

CDF Capabilities Declaration Form. This is a questionnaire that the supplier of the DUT fills out prior to the testing phase. It provides additional information about the device, its modes, and its intended operation. The CDF will be maintained on the DCP Website (www.digital‐cp.com/compliance).

DUT Device Under Test

PCP Product Capability Parameter

TE Test Equipment

TRF Test Results Form

HPD assert Hot plug, CONNECTION_STATUS_NOTIFY and IRQ_HPD are collectively referred to as Receiver Connected Indication in this specification.

HPD de-assert Hot Unplug is referred to as Receiver Disconnected Indication in this Specification.

Glossary of Terms

WARNING DUT’s operation did not meet expectations, but because this test only tests for compliance with recommendations, it cannot be treated as a failure.

PASS No error(s) were detected in the DUT’s operation, although the DUT may have WARNING item(s).

FAIL Error(s) were detected in the DUT’s operation.
Product Capability Parameters (PCP)

The PCP provides information about the behavior of the product under certain conditions and is requested from HDCP Adopters who wish to have their products tested. Information contained in the PCP is necessary to ensure accurate test reports.

Source Capability

Source_MultipleOutputs
Does the DUT support transmission of HDCP-protected content to more than one downstream device at the same time? (Y/N)

MST_Capable
Does the DUT support MST configuration. (Y/N)

SST
Does the DUT support SST configuration. (Y/N)

CP_IRQ
Does source support processing of CP_IRQ as per the HDCP2.2 spec. (Y/N)

Source_EncDisableBootstrapping
Does the DUT implement encryption disable bootstrapping when encryption is temporarily disabled?(Y/N)

Sink Capability

Sink_EncDisableBootstrapping
Does the DUT implement encryption disable bootstrapping when encryption is temporarily disabled?(Y/N)

Repeater Capability

Repeater_MultipleOutputs
Does the DUT support transmission of HDCP-protected content to more than one downstream device at the same time? (Y/N)

HDCP2.2 DisplayPort Compliance Test Specification

The HDCP DisplayPort Test Specification uses Pseudo-sinks, Pseudo-repeaters and Pseudo-source TEs to test corresponding source, sink and repeater DUTs. The TEs simulate the behavior of sources, sinks and repeaters and can be configured to test the behavior of the DUTs under normal and error conditions.

1. Transmitter Test

Transmitters (Source DUTs) are tested for compliance with the specification by connecting them to Receivers (TE pseudo-Sink) and Repeaters (TE pseudo-Repeater).

Note: The source is required to play protected content; thus requiring HDCP to be enabled. The Content Stream to be played does not have any output restrictions (Type = 0).

1A. Downstream procedure with Receiver

In these tests, a DisplayPort HDCP2.2 Receiver (TE pseudo-Sink) is connected to the Transmitter (DUT).

The operations of the DUT under 1, 2 and 4-lane Main Link configurations are tested.
1A-01. Regular Procedure – With previously connected Receiver (With stored k_m)

Test Objective

Verify the Transmitter’s implementation of the HDCP protocol when an HDCP Receiver (that was previously connected) is attached.

Required Test Method

<Connection Setup>

- Connect TE (pseudo-Sink) to the downstream HDCP-protected Interface Port of DUT

![Diagram showing TE (pseudo-Sink) connected to DUT (Source) via DP-HDCP2.2 Interface]

Note: Upon initial connection, TE should authenticate and complete pairing with the DUT before proceeding.

<Configuration of TE>

<table>
<thead>
<tr>
<th>Message</th>
<th>Parameter:</th>
<th>Value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication and Key Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKE_Send_Cert</td>
<td>RxCaps:REPEATER</td>
<td>FALSE(0)</td>
</tr>
<tr>
<td></td>
<td>RxCaps:HDCP_CAPABLE</td>
<td>TRUE(1)</td>
</tr>
<tr>
<td></td>
<td>cert$_{rx}$</td>
<td>Valid (within 100ms timeout)</td>
</tr>
<tr>
<td></td>
<td>r$_{rx}$</td>
<td>Valid (within 100ms timeout)</td>
</tr>
<tr>
<td>AKE_Send_H_prime</td>
<td>H’</td>
<td>Valid (within 200ms timeout)</td>
</tr>
<tr>
<td>Pairing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKE_Send_Pairing_Info</td>
<td>$E_{kh}.k_m$</td>
<td>Valid (used only for first time)</td>
</tr>
<tr>
<td>Locality Check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC_Send_L_prime</td>
<td>L’</td>
<td>Valid (within 7ms timeout)</td>
</tr>
</tbody>
</table>

<Test Case>

[Before Starting Authentication]
(STEP 1A-01-1)

☐ TE transmits Receiver Connected Indication (Hot plug, CONNECTION_STATUS_NOTIFY and IRQ_HPD) (Ref-1A-1)

☐ DUT Should read HDCP_CAPABLE bit RxCaps register. (Ref-1A-1)

☐ DUT may begin transmitting low value, unencrypted signal with HDCP Encryption disabled

 ➢ If DUT begins the Authentication and Key Exchange without sending unencrypted video signal, then WARNING (Ref-1A-2)

 ➢ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

[Authentication and Key Exchange]

(STEP 1A-01-2)

☐ DUT initiates authentication by transmitting AKE_Init

 ➢ If DUT does not write AKE_Init within 10 seconds of TE transmitting Receiver Connected Indication, then FAIL (Ref-1A-3)

 ➢ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

(STEP 1A-01-3)

☐ TE makes AKE_Send_Cert message available.

☐ If DUT attempts to read AKE_Send_Cert sooner than 100ms after writing the AKE_Init message, then WARNING (Ref-1A-3)

☐ DUT sends AKE_Stored_km message or AKE_No_Stored_Km message

 ➢ If DUT sends AKE_No_Stored_km message,
 • NOTE (“DUT does not appear to implement persistent pairing for faster authentication”)
 • TE computes H’ and sends AKE_Send_H_Prime message with 1sec
 • TE generates Ekh(Km) and sends AKE_Send_pairing_Info message within 200ms.

 ➢ If DUT sends AKE_Stored_km message
 • TE computes H’ and sets H’ AVAILABLE status bit in RxStatus register and creates the CP_IRQ interrupt to send AKE_Send_H_Prime message within 200ms timeout at the transmitter.
[Locality Check]

(STEP 1A-01-4)

- DUT sends LC_Init message
 - If DUT does not send LC_Init message within 5 seconds of AKE_Send_H_prime or AKE_Send_Pairing_Info message, then FAIL (Ref-1A-5)
 - TE computes L’ and sends LC_Send_L_prime message within the 7ms timeout to the transmitter.

[Session Key Exchange]

(STEP 1A-01-5)

- DUT sends SKE_Send_Eks message
 - If DUT does not send SKE_Send_Eks message within 5 seconds of transmission of LC_Send_L_prime message, then FAIL (Ref-1A-6)
- DUT writes Valid Type Value message
 - If DUT fails to write valid Type Value corresponding to the Content Stream, then FAIL.

(STEP 1A-01-6)

- DUT enables HDCP encryption 200ms after transmission of SKE_Send_Eks and TYPE message
 - If DUT enables HDCP encryption in less than 200ms, then FAIL (Ref-1A-6)
 - If DUT does not enable HDCP encryption between 200ms and 10 seconds of transmission of SKE_Send_Eks message, then FAIL (Ref-1A-6)

[Link Integrity Check]

(STEP 1A-01-7)

- DUT transmits encrypted LINK_VERIFICATION_PATTERN one bit at a time. TE checks the correctness of the LINK_VERIFICATION_PATTERN within the first 48VB-ID transmission
after encryption is enabled. If and incorrect LINK_VERIFICATION_PATTERN is detected, the TE attempts re-authentication four additional times and performs (STEP 1A-01-1) through (STEP 1A-01-7).

- If an incorrect LINK_VERIFICATION_PATTERN is detected within the first (16*3=48 VB-ID transmissions) 48 VB-ID transmission on all five attempts (it is assumed that the LINK_VERIFICATION_PATTERN transmitted by the DUT is incorrect), then FAIL (Ref-1A-11)

- If DUT does not restart authentication after the link integrity check failure is detected at TE and subsequently TE requesting re-authentication by setting LINK_INTEGRITY_FAILURE bit in RxStatus and generating CP_IRQ, then FAIL (Ref-1A-11)

☐ If DUT successfully completes the authentication and link integrity process and the image on TE looks valid as expected, then PASS (Ref-1A-10)
1A-02. Regular Procedure – With newly connected Receiver (Without stored \(k_m\))

Test Objective

Verify the Transmitter’s implementation of the HDCP protocol when an HDCP Receiver (not previously connected) is attached.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m\))

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m\)) except for following change:

- TE utilizes Receiver ID not paired to DUT and does not complete pairing

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m\))’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m\))’ is performed.

- TE sends AKE_Send_Cert message

(STEP 1A-02-1)

- DUT transmits AKE_No_Stored_km message
 - If DUT does not transmit AKE_No_Stored_km message within 5 seconds, then FAIL (Ref-1A-3)
 - If DUT sends AKE_Stored_km message, then FAIL (Ref-1A-3)
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

- If DUT sends AKE_No_Stored_km message, then PASS

Note: TE does not complete pairing.
1A-03. Regular Procedure – Receiver disconnect after AKE_Init

Test Objective

Verify the Source DUT restarts authentication after the receiver is disconnected and reconnected following the write of AKE_Init with a new \(r_{tx} \) value.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))’

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))’

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’ is performed.

- TE transmits Receiver Disconnected Indication after AKE_Init message
- TE waits 500ms
- TE transmits Receiver Connected Indication

(STEP 1A-03-1)

- DUT restarts Authentication and Key Exchange
 - If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’, then FAIL (Ref-1A-7)
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
- If DUT re-starts Authentication and Key Exchange on detecting Receiver Connected Indication and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’, then PASS
1A-04. Regular Procedure – Receiver disconnect after \(k_m \)

Test Objective

Verify the Source DUT restarts authentication after the receiver is disconnected and reconnected following the exchange of \(k_m \).

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \)"

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \)"

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \)’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) and (STEP 1A-01-3) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \)’ are performed.

- TE transmits Receiver Disconnected Indication after AKE_Stored_km message
- TE waits for 500ms
- TE transmits Receiver Connected Indication (duration of disconnect is interface dependent)

(STEP 1A-04-1)

- DUT restarts Authentication and Key Exchange
 - If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \)’, then FAIL (Ref-1A-7)
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
- If DUT re-starts Authentication and Key Exchange on detecting Receiver Connected Indication and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \)’, then PASS
1A-05. Regular Procedure – Receiver disconnect after locality check

Test Objective

Verify the Source DUT restarts authentication after the receiver is disconnected and reconnected after locality check is initiated.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Test Case>

The steps described under [Before Starting Authentication] and [Authentication and Key Exchange] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Locality Check]

(STEP 1A-01-4) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ is performed.

- TE transmits Receiver Disconnected Indication after LC_Init message
- TE waits for 500ms
- TE transmits Receiver Connected Indication (duration of disconnect is interface dependent)

(STEP 1A-05-1)

- DUT restarts Authentication and Key Exchange

 - If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then FAIL (Ref-1A-7)

 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

- If DUT re-starts Authentication and Key Exchange on detecting Receiver Connected Indication and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS
1A-06. Regular Procedure – Receiver disconnect after kₜ

Test Case
Verify the Source DUT restarts authentication after the receiver is disconnected and reconnected following the exchange of kₜ.

Required Test Method

<Connection Setup>
Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored kₘ)

<Configuration of TE>
Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored kₘ)

<Test Case>
The steps described under [Before Starting Authentication] through [Locality Check] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored kₘ)’ are performed.

[Session Key Exchange]
(STEP 1A-01-5) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored kₘ)’ is performed.

- TE transmits Receiver Disconnected Indication, within 100ms after SKE_Send_Eks message
- TE waits for 500ms
- TE transmits Receiver Connected Indication (duration of disconnect is interface dependent)

(STEP 1A-06-1)
- DUT restarts Authentication and Key Exchange
 - If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored kₘ)’, then FAIL (Ref-1A-7)
 - If DUT has enabled HDCP Encryption, then it should disable it before starting authentication else FAIL (Ref-1A-2)
☐ If DUT re-starts Authentication and Key Exchange on detecting Receiver Connected Indication and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS
1A-07. Regular Procedure – Receiver sends REAUTH_REQ after Ks

Test Objective
Verify the Source DUT restarts authentication after the receiver sends REAUTH_REQ following the exchange of Ks.

Required Test Method

<Connection Setup>
Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Configuration of TE>
Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Test Case>
The steps described under [Before Starting Authentication] through [Locality Check] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Session Key Exchange]

(STEP 1A-01-5) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ is performed.

- TE Sends REAUTH_REQ by setting REAUTH_REQ bit of the RxStatus and causing CP_IRQ after SKE_Send_Eks message is read by TE

(STEP 1A-07-1)

- DUT restarts Authentication and Key Exchange
 - If DUT does not restart Authentication and Key Exchange and (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then FAIL (Ref-1A-7)
 - If DUT has enabled HDCP Encryption, then it should disable it before re-starting authentication else FAIL (Ref-1A-2)

- If DUT re-starts Authentication and Key Exchange on detecting REAUTH_REQ and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS
1A-08. Irregular Procedure – Verify Receiver Certificate

Test Objective

Verify the Source DUT considers it a failure of authentication when verification of Receiver Certificate fails.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m) except for following change:

- TE provides invalid value for $cert_{rx}$

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ is performed.

(STEP 1A-08-1)

- TE provides invalid $cert_{rx}$ as part of AKE_Send_Cert
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-1)
 - If DUT transmits AKE_No_Stored_km or AKE_Stored_km, then FAIL (Ref-1A-8)
- If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS
 - If DUT does not attempt to restart authentication by performing (STEP 1A-01-2) after receipt of invalid $cert_{rx}$, then FAIL (Ref-1A-1)
1A-09. Irregular Procedure – SRM

Test Objective
Verify the Source DUT considers it a failure of authentication when the Receiver ID is on the revocation list.

Required Test Method
<Connection Setup>
Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored km)

<Configuration of TE>
Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored km)

<Test Case>
The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ is performed.

(STEP 1A-09-1)

☐ TE provides revoked Receiver ID as part of AKE_Send_Cert

➢ If DUT enables HDCP Encryption, then FAIL (Ref-1A-1)

➢ If DUT transmits AKE_No_Stored_km or AKE_Stored_km, then FAIL (Ref-1A-8)

☐ If DUT aborts Authentication and Key Exchange within 2 seconds of receipt of revoked Receiver ID, then PASS. Otherwise, FAIL(Ref-1A-2) (Ref-1A-8)

Note: DUT may alternatively re-start Authentication and Key Exchange and perform (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, by transmitting a new r_x as part of AKE_Init.
1A-10. Irregular Procedure – Invalid H’

Test Objective

Verify the Source DUT considers it a failure of authentication if the Receiver provides a value for H’ that does not match H, or does not respond with H’ in the allotted time.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored km)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored km)

- Exception in Test Case 3 – TE utilizes unpaired Receiver ID.

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ is performed.

Three test cases; all are performed

[Test Case 1 – Invalid H’]

(STEP 1A-10-1)

- TE sends AKE_Send_Cert message (with previously paired Receiver ID)
- DUT sends AKE_Stored_km or AKE_No_Stored_Km message
 - If DUT does not send AKE_Stored_km or AKE_No_Stored_Km message, then FAIL (Ref-1A-4)
- TE provides invalid H’ as part of AKE_Send_H_prime
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
 - If DUT transmits LC_Init, then FAIL (Ref-1A-8)
If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS

- If DUT does not attempt to restart authentication by performing (STEP 1A-01-2) after receipt of invalid H’, then FAIL (Ref-1A-1)

[Test Case 2 – H’AVAILABLE timeout after AKE_Stored_km]

(STEP 1A-10-2)

- TE sends AKE_Send_Cert message (with previously paired Receiver ID)
- DUT sends AKE_Stored_km message
 - If DUT send AKE_No_Stored_km message, then NOTE (“NOT JUDGED-DUT does not appear to implement persistent pairing for faster authentication”); TE ends test
 - If DUT does not send AKE_Stored_km message or AKE_No_Stored_km message, then FAIL (Ref-1A-4)

- TE does not respond with setting H’AVAILABLE in RxStatus and not setting the CP_IRQ within the 200ms timeout at the transmitter
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-1)
 - If DUT transmits LC_Init, then FAIL (Ref-1A-8)

- If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS
 - If DUT does not attempt to restart authentication by performing (STEP 1A-01-2) after expiry of the 200ms timeout, then FAIL (Ref-1A-1)

[Test Case 3 – H’AVAILABLE timeout after AKE_No_Stored_km]

(STEP 1A-10-3)

- TE sends AKE_Send_Cert message (with unpaired Receiver ID)
- DUT sends AKE_No_Stored_km message
 - If DUT does not send AKE_No_Stored_km message, then FAIL (Ref-1A-3)
☐ TE does not respond with setting H'_AVAILABLE in RxStatus and not setting the CP_IRQ within the 1 second timeout at the transmitter

 ➢ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
 ➢ If DUT transmits LC_Init, then FAIL (Ref-1A-8)

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS

 ➢ If DUT does not attempt to restart authentication by performing (STEP 1A-01-2) after expiry of the 1second timeout, then FAIL (Ref-1A-1)
1A-11. Irregular Procedure – Pairing Failure

Test Objective

Verify the Source DUT considers it a failure of authentication if the Receiver does not send AKE_Send_Pairing_Info.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m) except for following change:

☐ TE utilizes Receiver ID not paired to DUT

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ is performed.

(STEP 1A-11-1)

☐ TE sends AKE_Send_Cert message

☐ DUT sends AKE_No_Stored_km message

➤ If DUT does not transmit AKE_No_Stored_km message, then FAIL (Ref-1A-3)

➤ If DUT sends AKE_Stored_km message, then FAIL (Ref-1A-3)

➤ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

(STEP 1A-11-2)

☐ TE computes H' and respond with setting $H'_AVAILABLE$ in RxStatus and setting the CP_IRQ within the 1 second and sends valid AKE_Send_H_prime message
(STEP 1A-11-3)

☐ TE does not send AKE_Send_Pairing_Info message within 200ms of the reception of AKE_Send_H_prime

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS

➢ If DUT does not attempt to restart authentication by performing (STEP 1A-01-2) after expiry of the 200ms timeout, then FAIL (Ref-1A-1)

Note: TE does not complete pairing.
1A-12. Irregular Procedure – Locality Failure

Test Objective

Verify the Source DUT considers it a failure of authentication if the Receiver provides a value for L’ that does not match L.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored km)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored km)

<Test Case>

The steps described under [Before Starting Authentication] and [Authentication and Key Exchange] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

[Locality Check]

(STEP 1A-01-4) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ is performed.

(STEP 1A-12-1)

- TE provides invalid L’ as part of LC_Send_L_prime message for first and subsequent 1023 re-attempts

(STEP 1A-12-2)

- DUT reattempts locality check with the transmission of LC_Init 1023 additional times (for a total max of 1024 attempts) with new Rn
 - If Rn is not different in each attempt then FAIL

(STEP 1A-12-3)

- DUT restarts Authentication and Key Exchange
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

- If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS
If DUT does not attempt to restart authentication by performing (STEP 1A-01-2) after receipt of invalid L', then FAIL (Ref-1A-1)
1A-13. Regular Procedure – Encryption Disable Bootstrapping

Test Objective

Verify that the Transmitter correctly implements encryption disable bootstrapping when encryption is temporarily disabled.

Required Test Method

This test case is implemented only if Source_EncDisableBootstrapping = Y

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))

<Test Case>

The steps described under [Before Starting Authentication] and [Link Integrity Check] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’ are performed.

(STEP 1A-13-1)

☐ The flow of HDCP Content is stopped causing encryption to be disabled by the DUT.

☐ TE performs encryption disable bootstrapping

☐ The flow of HDCP Content is started causing encryption to be enabled by the DUT

The steps described under [Link Integrity Check] in ‘1A-01 Regular Procedure: With Receiver’ are performed

- If a link integrity failure is detected within the initial two frames that are transmitted after encryption is re-enabled, then FAIL(Ref-1A-10)

- Verify visually that the encrypted image is valid and as expected, else FAIL (Ref-1A-10)

☐ If a link integrity failure is not detected within the initial two frames that are transmitted after encryption is re-enabled, then PASS
1B. **Downstream procedure with Repeater**

In these tests, an HDCP Repeater (TE pseudo-Repeater) is connected to the Transmitter (DUT).
1B-01. Regular Procedure – With Repeater

Test Objective
Verify the Source DUT works with a repeater attached under nominal circumstances

Required Test Method

<Connection Setup>

- Connect TE to the downstream HDCP-protected Interface Port of DUT

```plaintext
DP HDCP2.2 DUT (Source)  DP HDCP2.2 TE (pseudo-Repeater)
```

<Configuration of TE>

<table>
<thead>
<tr>
<th>Message:</th>
<th>Parameter:</th>
<th>Value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication and Key Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKE_Send_Cert</td>
<td>RxCaps:REPEATER</td>
<td>TRUE(1)</td>
</tr>
<tr>
<td></td>
<td>RxCaps:HDCP_CAPABLE</td>
<td>TRUE(1)</td>
</tr>
<tr>
<td></td>
<td>rx</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>cert</td>
<td>Valid</td>
</tr>
<tr>
<td>AKE_Send_H_prime</td>
<td>H’</td>
<td>Valid (within 200ms timeout)</td>
</tr>
<tr>
<td>Pairing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKE_Send_Pairing_Info</td>
<td>E_{kh},k_m</td>
<td>Valid (used only for first time)</td>
</tr>
<tr>
<td>Locality Check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC_Send_L_prime</td>
<td>L’</td>
<td>Valid (within 7ms timeout)</td>
</tr>
<tr>
<td>Authentication with Repeater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiver Auth_ Send_ Receiver</td>
<td>RxInfo:MAX_DEVS_EXCEEDED</td>
<td>FALSE</td>
</tr>
<tr>
<td>D_List</td>
<td>RxInfo:MAX_CASCADE_EXCEEDED</td>
<td>FALSE</td>
</tr>
<tr>
<td></td>
<td>RxInfo:HDCP2_0_REPEATER_DOWNSTREAM</td>
<td>FALSE</td>
</tr>
<tr>
<td></td>
<td>RxInfo:HDCP1_DEVICE_DOWNSTREAM</td>
<td>FALSE</td>
</tr>
<tr>
<td></td>
<td>RxInfo:DEVICE_COUNT</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>RxInfo:DEPTH</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Receiver ID List</td>
<td>(DEVICE_COUNT * 5) bytes</td>
</tr>
<tr>
<td></td>
<td>V’</td>
<td>16 bytes, Valid (within 3 second timeout)</td>
</tr>
<tr>
<td></td>
<td>seq_num_V</td>
<td>Valid</td>
</tr>
</tbody>
</table>
<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Authentication with Repeaters]

(STEP 1B-01-1)

☐ TE clears MAX_CASCADE_EXCEEDED, MAX_DEVS_EXCEEDED, HDCP2_0_REPEATER_DOWNSTREAM, and HDCP1_DEVICE_DOWNSTREAM flags, sets DEPTH and DEVICE_COUNT to the configured values, initializes seq_num_V to 0, generates the ReceiverID_List and computes V'; in the RepeaterAuth_Send_ReceiverID_List message

☐ TE sets the READY bit in RxStatus and asserts CP_IRQ interrupt
RepeaterAuth_Send_ReceiverID_List within the 3 second timeout of the receipt of SKE_Send_Eks

☐ DUT transmits 128 least significant bits of V to TE in the RepeaterAuth_Send_Ack message

 ➢ If DUT does not transmit RepeaterAuth_Send_Ack message within 2 seconds from the time the READY status was set and the CP_IRQ interrupt was asserted by the TE, then FAIL (Ref-1B-2)

 ➢ If 128 least significant bits of V transmitted by DUT do not match the 128 least significant bits of V' computed by the TE, then FAIL (Ref-1B-2)

(STEP 1B-01-2)

Note: The Transmitter DUT must complete Content Stream Management at least 100ms before transmitting the reference stream. Content Stream Management may be implemented in parallel with Authentication with Repeaters. The TE will support either method of Content Stream Management implemented in the DUT.

☐ DUT Transmits RepeaterAuth_Stream_Manage message

 ➢ If DUT does not transmit RepeaterAuth_Stream_Manage message within 5sec of TE receiving SKE_Send_Eks, then FAIL

 ➢ If DUT does not start with seq_num_M equal to 0, then FAIL

 ➢ If K is not 31 then FAIL
➢ All StreamID values should be distinct else FAIL

➢ If Type is other than 0 or 1 then Warning

☐ TE responds with RepeaterAuth_Stream_Ready message within 100ms

(STEP 1B-01-3)

☐ DUT begins transmitting Content Stream within 10 seconds of completion of Content Stream Management and Authentication with Repeater

➢ If DUT begins transmitting Content Stream before 100ms after completion of Content Stream Management, then FAIL (Ref-1B-5)

☐ If DUT successfully completes the authentication process, then PASS
1B-02. Irregular Procedure – Timeout of Receiver ID list

Test Objective

Verify that the Source DUT considers it a failure of authentication if the downstream repeater does not respond with RepeaterAuth_Send_ReceiverID_List prior to expiration of watchdog timer.

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE does not respond with READY bit in RxStatus and does not send CP_IRQ interrupt within the 3 second timeout of the receipt of SKE_Send_Eks.

<Test Case>

The steps under [Before Starting Authentication] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

[Authentication and Key Exchange]

(STEP 1B-02-1)

☐ TE does not respond with READY bit in RxStatus and does not send CP_IRQ interrupt within the 3 second timeout of the receipt of SKE_Send_Eks.

☐ DUT waits 3 seconds for the reception of Ready bit in RxStatus and CP_IRQ

(STEP 1B-02-2)

☐ DUT disables encryption, if enabled, after the expiration of the 3 second timer.

➤ If DUT disables encryption, if enabled, before the timer expires, then FAIL(Ref-1B-2)

➤ If DUT does not disable encryption, if enabled, after the timer expires, then FAIL (Ref-1B-2)

☐ If DUT restarts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – with previously connected Receiver (With stored km)’, then PASS
If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) after expiration of the 3 second timeout, then FAIL(Ref-1A-1)
1B-03. Irregular Procedure – Verify V’

Test Objective

Verify that the Source considers it a failure of authentication if the repeater provides a value for V’ that does not match V.

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’ except for the following change:

□ TE provides an incorrect value for V’

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km),’ are performed.

(STEP 1B-03-1)

□ TE clears MAX_CASCADE_EXCEEDED, MAX_DEVS_EXCEEDED, HDCP2_0_REPEATER_DOWNSTREAM and HDCP1DEVICE_DOWNSTREAM flags, sets DEPTH and DEVICE_COUNT to the configured value, initializes seq_num_V to 0, generates the ReceiverID_List and computed invalid V’ in the RepeaterAuth_Send_ReceiverID_List message

□ TE responds with READY bit in RxStatus and asserts CP_IRQ interrupt within the 3 second timeout of the receipt of SKE_Send_Eks

(STEP 1B-03-2)

□ DUT disables encryption, if enabled, after receiving invalid V’

➢ If DUT does not disables encryption, if enabled, then FAIL(Ref-1B-2)

□ If DUT restarts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – with previously connected Receiver (With stored km), then PASS

➢ If DUT does not attempts to re-start authentication by performing (STEP 1A-01-2) after receipt of invalid V’, then FAIL(Ref-1B-2)
1B-04. Irregular Procedure – MAX_DEVS_EXCEEDED

Test Objective

Verify the Source DUT considers it a failure of authentication if the repeater sets the MAX_DEVS_EXCEEDED bit in the RepeaterAuth_Send_ReceiverID_List message.

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’ except for the following change:

- TE sets MAX_DEVS_EXCEEDED to ‘TRUE’ in RepeaterAuth_Send_ReceiverID_List message

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

(STEP 1B-04-1)

- TE clears MAX_CASCADE_EXCEEDED, DEPTH, DEVICE_COUNT, HDCP2_0_REPEATER_DOWNSTREAM, and HDCP1_DEVICE_DOWNSTREAM flags, sets MAX_DEVS_EXCEEDED to ‘TRUE’ and does not generate the ReceiverID_List, seq_num_V or compute V’ in the RepeaterAuth_Send_ReceiverID_List message

- TE responds with READY bit in RxStatus and asserts CP_IRQ interrupt within the 3 second timeout of the receipt of SKE_Send_Eks

(STEP 1B-04-2)

- DUT disables HDCP encryption after receiving MAX_DEVS_EXCEEDED error

 - If DUT does not disable encryption after receiving MAX_DEVS_EXCEEDED error, then FAIL (Ref-1B-3)

- If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored Km)’, then PASS

 - If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) after receipt of the MAX_DEVS_EXCEEDED error, then FAIL (Ref-1A-1)
1B-05. Irregular Procedure – MAX_CASCADE_EXCEEDED

Test Objective

Verify the Source DUT considers it a failure of authentication if the repeater sets the MAX_CASCADE_EXCEEDED bit in the RepeaterAuth_Send_ReceiverID_List message.

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE sets MAX_CASCADE_EXCEEDED to ‘TRUE’ in RepeaterAuth_Send_ReceiverID_List message

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

(STEP 1B-05-1)

☐ TE clears MAX_DEVS_EXCEEDED, DEPTH, DEVICE_COUNT, HDCP2_0_REPEATER_DOWNSTREAM, and HDCP1_DEVICE_DOWNSTREAM flags, sets MAX_CASCADE_EXCEEDED to ‘TRUE’ and does not generate the ReceiverID_List, seq_num_V or compute V’ in the RepeaterAuth_Send_ReceiverID_List message

☐ TE responds with READY bit in RxStatus and asserts CP_IRQ interrupt within the 3 second timeout of the receipt of SKE_Send_Eks

(STEP 1B-05-2)

☐ DUT disables HDCP encryption, if enabled, after receiving MAX_CASCADE_EXCEEDED error

➢ If DUT does not disable encryption, if enabled, after receiving MAX_CASCADE_EXCEEDED error, then FAIL (Ref-1B-3)

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS

➢ If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) after receipt of the MAX_CASCADE_EXCEEDED error, then FAIL (Ref-1A-1)
1B-06. **Irregular Procedure – Incorrect seq_num_V**

Test Objective
Verify the Source DUT considers it a failure of authentication if the repeater provides a non-zero value in `seq_num_V` in the first `RepeaterAuth_Send_ReceiverID_List` message after AKE_Init.

Required Test Method

<Connection Setup>
Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>
Same as ‘1B-01 Regular Procedure – With Repeater’ except for the following change:
- TE sets non-zero value for `seq_num_V` in first `RepeaterAuth_Send_ReceiverID_List` message

<Test Case>
The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

(STEP 1B-06-1)
- TE clears `MAX_CASCADE_EXCEEDED`, `MAX_DEV_EXCEEDED`, `HDCP2_0_REPEATER_DOWNSTREAM` and `HDCP1_DEVICE_DOWNSTREAM` flags, sets `DEPTH`, `DEVICE_COUNT` to configured value and set `seq_num_V` to a non-zero value and computes `V'` in the `RepeaterAuth_Send_ReceiverID_List` message
- TE responds with READY bit in RxStatus and asserts CP_IRQ interrupt within the 3 second timeout of the receipt of SKE_Send_Eks

(STEP 1B-06-2)
- DUT disables HDCP encryption, if enabled, after receiving a non-zero `seq_num_V`
 - If DUT does not disable encryption, if enabled, after receiving a non-zero `seq_num_V`, then FAIL (Ref-3C-7)
- If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored Km)’, then PASS
 - If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) after receipt of a non-zero `seq_num_V`, then FAIL (Ref-1B-4)
1B-07. Regular Procedure – Re-authentication on HPD

Test Objective

Verify the Source DUT initiates re-authentication when a HPD is received from the downstream repeater.

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

The steps under [Authentication with Repeaters] described in ‘1B-01 Regular Procedure – With Repeater’ are performed.

(STEP 1B-07-1)

- TE de-asserts HPD after RepeaterAuth_Send_ReceiverID_List message
- TE asserts HPD after 500ms

(STEP 1B-07-2)

- DUT restarts Authentication and Key Exchange
 - If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then FAIL (Ref-1A-7)
 - If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS
1B-08. Regular Procedure – Re-authentication on REAUTH_REQ

Test Objective

Verify that the Source DUT initiates re-authentication when a REAUTH_REQ is received from the downstream repeater.

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

The steps under [Authentication with Repeaters] described in ‘1B-01 Regular Procedure – With Repeater’ are performed.

(STEP 1B-08-1)

☐ TE responds with REAUTH_REQ bit in RxStatus and asserts CP_IRQ interrupt

(STEP 1B-08-2)

☐ DUT disables HDCP encryption, if enabled, after receiving REAUTH request

➤ If DUT does not disable encryption, if enabled, after receiving REAUTH request, then FAIL (Ref-1A-7)

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored Km)’, then PASS

➤ If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) after receipt of the REAUTH_REQ, then FAIL (Ref-1A-7)
1B-09. Irregular Procedure – Rollover of seq_num_V

Test Objective

Verify that the Source DUT initiates re-authentication when a rollover of seq_num_V is detected from the downstream repeater.

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

The steps under [Authentication with Repeaters] described in ‘1B-01 Regular Procedure – With Repeater’ are performed.

(STEP 1B-09-1)

- TE sets seq_num_V to 0xFFFFFFh
- TE simulates disconnect of an active downstream device by decrementing DEVICE_COUNT and adjusting the ReceiverID_List and transmits RepeaterAuth_Send_ReceiverID_List message
- DUT transmits 128 least significant bits to TE in the RepeaterAuth_Send_Ack message
 - If DUT does not transmit RepeaterAuth_Send_Ack message within one second, then FAIL (Ref-1B-2)
 - If 128 least significant bits transmitted by DUT do not match the 128 least significant bits computed by the TE, then FAIL (Ref-1B-2)

(STEP 1B-09-2)

- TE sets seq_num_V to 0x000000h (indicating rollover of seq_num_V)
- TE simulates connection of an active downstream device (same device that disconnected in STEP 1B-09-1) by incrementing DEVICE_COUNT and adjusting the ReceiverID_List and transmits RepeaterAuth_Send_ReceiverID_List message
(STEP 1B-09-3)

☐ DUT restarts Authentication and Key Exchange upon detecting rollover of seq_num_V

 ➢ If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then FAIL (Ref-1A-7)

☐ If DUT detects the rollover of seq_num_V as a failure of authentication, and re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS
1B-10. Irregular Procedure – Failure of Content Stream Management

Test Objective

Verify that the Source DUT re-attempts Content Stream Management following a failure of Content Stream Management.

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’ except for following change:

☐ TE provides an incorrect value for M'

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Authentication with Repeaters]

(STEP 1B-01-1) described in ‘1B-01 Regular Procedure – With Repeater’ is performed.

Two test cases; both are performed

[Test Case 1 – Incorrect value for M']

(STEP 1B-10-1)

☐ DUT transmits RepeaterAuth_Stream_Manage message

➤ If DUT does not transmit RepeaterAuth_Stream_Manage message within 5 sec, then FAIL (Ref-1B-5)

☐ TE responds with RepeaterAuth_Stream_Ready message within 100 ms with incorrect value for M'

(STEP 1B-10-2)

☐ DUT transmits RepeaterAuth_Stream_Manage message with incremented seq_num_M

➤ If DUT transmits content stream without resending RepeaterAuth_Stream_Manage message, then FAIL (Ref-1B-5)
If DUT transmits RepeaterAuth_Stream_Manage message with same seq_num_M, then FAIL (Ref-1B-5)

If DUT does not transmit new RepeaterAuth_Stream_Manage message, then WARNING (Ref-1B-5)

If DUT transmits new valid RepeaterAuth_Stream_Manage message after failure of M' comparison, then PASS

[Test Case 2 – Timeout of RepeaterAuth_Stream_Ready message]

(STEP 1B-10-3)

DUT transmits RepeaterAuth_Stream_Manage message

If DUT does not transmit RepeaterAuth_Stream_Manage message within 5 second, then FAIL (Ref-1B-5)

TE does not respond with RepeaterAuth_Stream_Ready message within 100ms

(STEP 1B-10-4)

DUT transmits RepeaterAuth_Stream_Manage message with incremented seq_num_M

If DUT transmits content stream without resending RepeaterAuth_Stream_Manage message, then FAIL (Ref-1B-5)

If DUT transmits RepeaterAuth_Stream_Manage message with same seq_num_M, then FAIL (Ref-1B-5)

If DUT does not transmit new RepeaterAuth_Stream_Manage message, then WARNING (Ref-1B-5)

If DUT transmits new RepeaterAuth_Stream_Manage message after timeout of 100ms timer, then PASS
2. Receiver Tests

receivers (sink DUTs) are tested for compliance with the DisplayPort-HDCP2.2 specification by connecting them to Transmitters (TE pseudo-Source).

2C. Upstream procedure with Transmitter

Receiver’s upstream procedure with Transmitter is tested with an HDCP2.2-capable Transmitter. Make sure that the DUT maintains “connection” during the test, unless “receiver disconnect” is needed during the test.

In these tests, an HDCP2.2 Transmitter (TE Pseudo-source) is connected to the Receiver (DUT).

The operations of the DUT under 1, 2 and 4-lane Main Link Configurations are tested.
2C-01. Regular Procedure – With transmitter

Test Objective

Verify the Receiver DUT works with an attached source under nominal circumstances.

Required Test Method

<Connection Setup>

☐ Connect TE to the upstream HDCP-protected Interface Port of DUT

![Diagram showing connection setup]

<Test Case>

[Before Starting Authentication]

(STEP 2C-01-1)

☐ TE detects Receiver Connected Indication

➢ If DUT does not send Receiver Connected Indication (Hot plug, CONNECTION_STATUS_NOTIFY and IRQ_HPD) within 10 seconds, then FAIL (Ref-2C-1.)

[Authentication and Key Exchange]

(STEP 2C-01-2)

☐ TE begins sending unencrypted video signal with HDCP Encryption disabled

☐ TE transmits AKE_Init message

☐ DUT transmits AKE_Send_Cert message

➢ If DUT does not make AKE_Send_Cert message available within 100ms, then FAIL (Ref-2C-2)

➢ If AKE_Send_Cert:RxCaps:REPEATER is ‘TRUE’, then FAIL (Ref-2C-3)

Two test cases; both are performed

[Test Case 1 – Not previously connected Receiver ID]
(STEP 2C-01-3)

- TE transmits AKE_No_Stored_km message

(STEP 2C-01-4)

- DUT set H'_AVAILABLE status bit in RxStatus and generates CP_IRQ and makes AKE_Send_H_prime message available
 - If DUT does not set H'_AVAILABLE status bit in RxStatus and generates CP_IRQ and makes valid AKE_Send_H_prime message available within 1 second from the time the transmitter finishes writing the AKE_No_Stored_Km, then FAIL (Ref-2C-2)
 - If H' is not equal to H, then FAIL (Ref-2C-2)

[Pairing]

(STEP 2C-01-5)

- DUT set PAIRING_AVAILABLE status bit in RxStatus and generates CP_IRQ and makes AKE_Send_Pairing_Info message available
 - If DUT does not set PAIRING_AVAILABLE status bit in RxStatus and generates CP_IRQ and makes AKE_Send_Pairing_Info message available within 200 ms of AKE_Send_H_prime message, then FAIL (Ref-1A-4)

[Test Case 2 – Previously connected Receiver ID]

(STEP 2C-01-6)

- TE transmits AKE_Stored_km message

(STEP 2C-01-7)

- DUT set H'_AVAILABLE status bit in RxStatus and generates CP_IRQ and makes AKE_Send_H_prime message available
 - If DUT does not set H'_AVAILABLE status bit in RxStatus and generates CP_IRQ and makes valid AKE_Send_H_prime message available within 200 ms from the time the transmitter finishes writing the AKE_Stored_Km, then FAIL (Ref-2C-2)
 - If H' is not equal to H, then FAIL (Ref-2C-2)
 - If DUT transmits AKE_Send_Pairing_Info, then FAIL (Ref-1A-4 Error! Reference source not found.)

[Both test cases]
[Locality Check]

(STEP 2C-01-8)
- TE transmits LC_Init message
- DUT sends LC_Send_L_prime message
 - If DUT does not make valid LC_Send_L_prime message available within 7ms of transmission of LC_Init message, then FAIL(Ref-2C-4)
 - If L' does not match L, then FAIL (Ref-2C-4)

[Session Key Exchange]

(STEP 2C-01-9)
- TE transmits SKE_Send_Eks and Type message
- TE enables HDCP Encryption 200ms after transmitting SKE_Send_Eks and Type message
- TE transmits visible test pattern to DUT
- If DUT completes the authentication process and test pattern is viewed successfully, then PASS
2C-02. Irregular Procedure – New Authentication after AKE_Init

Test Objective

Verify the Receiver DUT restarts authentication when a new AKE_Init and \(r_{tx} \) is transmitted right after the transmission of AKE_Init in the unauthenticated state.

Required Test Method

<Connection Setup>

Same as ‘2C-01 Regular Procedure – With Transmitter’

<Test Case>

The steps described under [Before Starting Authentication] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Authentication and Key Exchange]

(STEP 2C-01-1) described in ‘2C-01 Regular Procedure – With Transmitter’ is performed.

(STEP 2C-02-1)

- TE transmits AKE_Init message

(STEP 2C-02-2)

- DUT transmits AKE_Send_Cert message
 - If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)
 - If AKE_Send_Cert:REPEATER is ‘TRUE’, then FAIL (Ref-2C-3)

The steps under [Test Case 2 – Previously connected Receiver ID] described in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

- If DUT successfully completes authentication with the new \(r_{tx} \) value provided in the second AKE_Init message, then PASS
2C-03. Irregular Procedure – New Authentication during Locality Check

Test Objective

Verify the Receiver DUT restarts authentication when a new AKE_Init and r_x is transmitted right after the reception of LC_Init.

Required Test Method

<Connection Setup>

Same as ‘2C-01 Regular Procedure – With Transmitter’

<Test Case>

The steps described under [Before Starting Authentication] and [Authentication and Key Exchange] (for [Test Case 2 – Previously connected Receiver ID]) in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Locality Check]

(STEP 2C-03-1)

☐ TE transmits LC_Init message

☐ TE transmits AKE_Init message

(STEP 2C-03-2)

☐ DUT transmits AKE_Send_Cert message

➢ If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)

The steps under [Test Case 2 – Previously connected Receiver ID] described in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

☐ If DUT successfully completes authentication with the new r_x value provided in the second AKE_Init message, then PASS
2C-04. Irregular Procedure – New Authentication after SKE_Send_Eks

Test Objective

Verify the Receiver DUT restarts authentication when a new AKE_Init and rrx is transmitted right after the reception of SKE_Send_Eks.

Required Test Method

<Connection Setup>

Same as ‘2C-01 Regular Procedure – With Transmitter’

<Test Case>

The steps described under [Before Starting Authentication] and [Authentication and Key Exchange] (for [Test Case 2 – Previously connected Receiver ID]) and [Locality Check] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Session Key Exchange]

(STEP 2C-04-1)

☐ TE transmits SKE_Send_Eks and Type message

☐ TE transmits AKE_Init message

(STEP 2C-04-2)

☐ DUT transmits AKE_Send_Cert message

➢ If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)

The steps under [Test Case 2 – Previously connected Receiver ID] described in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

☐ If DUT successfully completes authentication with the new rrx value provided in the second AKE_Init message, then PASS
2C-05. Irregular Procedure – New Authentication during Link Synchronization

Test Objective

Verify the Receiver DUT restarts authentication when a new AKE_Init and r_{tx} is transmitted during Link Synchronization.

Required Test Method

<Connection Setup>

Same as ‘2C-01 Regular Procedure – With Transmitter’

<Test Case>

The steps described under [Before Starting Authentication] and [Authentication and Key Exchange] (for [Test Case 2 – Previously connected Receiver ID]) and [Locality Check] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Session Key Exchange]

(STEP 2C-05-1)

☐ TE transmits SKE_Send_Eks and Type messages

☐ TE enables HDCP Encryption 200ms after transmitting SKE_Send_Eks message

☐ TE transmits AKE_Init message

(STEP 2C-05-2)

☐ DUT transmits AKE_Send_Cert message

➢ If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)

The steps under [Test Case 2 – Previously connected Receiver ID] described in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

☐ If DUT successfully completes authentication with the new r_{tx} value provided in the second AKE_Init message, then PASS
2C-06. Regular Procedure – Encryption Disable Bootstrapping

Test Objective

Verify the Receiver DUT correctly implements encryption disable bootstrapping.

Required Test Method

<Connection Setup>

Same as ‘2C-01 Regular Procedure – With Transmitter’

<Test Case>

The steps described under [Before Starting Authentication] and [Authentication and Key Exchange] (for [Test Case 2 – Previously connected Receiver ID]) in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

☐ TE disables HDCP Encryption and sends unencrypted video signal
☐ TE performs encryption disable bootstrapping
☐ TE re-enables HDCP Encryption

The steps described under [Link Integrity Check] in ‘2C-01 Regular Procedure- with Transmitter’ are performed.

➢ If a link integrity failure occurs within the initial two frames that are transmitted after encryption is re-enabled, then FAIL(Ref-1A-11)

☐ If a link integrity failure does not occur within the initial two frames that are transmitted after encryption is re-enabled, then PASS
3. Repeater Tests

Repeater DUTs are tested for compliance with the DisplayPort HDCP2.2 specification by connecting them to Receivers (TE pseudo-Sink), Repeaters (TE pseudo-Repeater) and Transmitters (TE pseudo-Source).

3A. Downstream Procedure with Receiver

In this test, a DisplayPort Receiver (TE pseudo-Sink) is connected to the downstream HDCP2.2-protected Interface Port of the Repeater DUT. An HDCP2.2 Transmitter (providing HDCP2.2-protected content) is connected to the upstream HDCP2.2-protected Interface Port of the Repeater DUT.

The operation of the DUT under 1, 2 and 4-lane Main Link configuration is tested.
3A-01. Regular Procedure – With previously connected Receiver (With stored k_m)

Test Objective

Verify the Repeater’s implementation of the HDCP2.2 protocol when an HDCP2.2 Receiver (that was previously connected) is attached.

Required Test Method

<Connection Setup>

- Connect an HDCP Source device to the upstream HDCP-protected Interface Port of DUT
- Connect TE (pseudo-Sink) to the downstream HDCP-protected Interface Port of DUT

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)’

<Test Case>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)’
3A-02. Regular Procedure – With newly connected Receiver (Without stored k_m)

Test Objective

Verify the Repeater’s implementation of the HDCP2.2 protocol when an HDCP2.2 Receiver (not previously connected) is attached.

Required Test Method

<Connection Setup>

Same as ‘3A-01 Regular Procedure – With previously connected receiver (With stored k_m)’

<Configuration of TE>

Same as ‘1A-02 Regular Procedure – With newly connected Receiver (Without stored k_m)’

<Test Case>

Same as ‘1A-02 Regular Procedure – With newly connected Receiver (Without stored k_m)’
3A-03. Irregular Procedure – Verify Receiver Certificate

Test Objective

Verify the Repeater DUT considers it a failure of authentication when verification of Receiver certificate fails.

Required Test Method

<Connection Setup>

Same as ‘3A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))’

<Configuration of TE>

Same as ‘1A-08 Irregular Procedure – Verify Receiver Certificate’

<Test Case>

Same as ‘1A-08 Irregular Procedure – Verify Receiver Certificate’
3A-04. Irregular Procedure – Invalid H’

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the Receiver provides a value for H’ that does not match H, or does not respond with H’ in the allotted time.

Required Test Method

<Connection Setup>

Same as ‘3A-01 Regular Procedure – With previously connected receiver (With stored k_m)’

<Configuration of TE>

Same as ‘1A-10 Irregular Procedure – Invalid H’

<Test Case>

Same as ‘1A-10 Irregular Procedure – Invalid H’
3A-05. Irregular Procedure – Pairing Failure

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the Receiver does not send AKE_Send_Pairing_Info.

Required Test Method

<Connection Setup>

Same as ‘3A-01 Regular Procedure – With previously connected receiver (With stored kₘ)’

<Configuration of TE>

Same as ‘1A-11 Irregular Procedure – Pairing Failure’

<Test Case>

Same as ‘1A-11 Irregular Procedure – Pairing Failure’
3A-06. Irregular Procedure – Locality Failure

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the Receiver provides a value for L’ that does not match L, or does not responds with L’ in the allotted time.

Required Test Method

<Connection Setup>

Same as ‘3A-01 Regular Procedure – With previously connected receiver (With stored k_m)’

<Configuration of TE>

Same as ‘1A-12 Regular Procedure – Locality Pre-Compute Support’

<Test Case>

Same as ‘1A-12 Regular Procedure – Locality Pre-Compute Support’
3B. **Downstream Procedure with Repeater**

In this test, a DisplayPort Repeater (TE pseudo-Repeater) is connected to the downstream HDCP2.2-protected Interface Port of the Repeater DUT. A DisplayPort HDCP2.2 Transmitter (providing HDCP2.2-protected content) is connected to the upstream HDCP2.2-protected Interface Port of the Repeater DUT.

The operation of the DUT under 1, 2 and 4-lane Main Link configuration is tested.
3B-01. Regular Procedure – With Repeater

Test Objective

Verify the Repeater DUT’s implementation of the HDCP2.2 Protocol when an HDCP2.2 repeater attached under nominal circumstances.

Required Test Method

<Connection Setup>

- Connect an HDCP Source device to the upstream HDCP-protected Interface Port of DUT
- Connect TE to the downstream HDCP-protected Interface Port of DUT

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’ except for the following change

- RepeaterAuth_Send_ReceiverID_List:DEVICE_COUNT = 30
- RepeaterAuth_Send_ReceiverID_List:DEPTH = 3

<Test Case>

Same as ‘1B-01 Regular Procedure – With Repeater’
3B-02. Irregular Procedure – Timeout of Receiver ID list

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the downstream repeater does not respond with RepeaterAuth_Send_ReceiverID_List prior to expiration of watchdog timer.

Required Test Method

<Connection Setup>
Same as ‘3B-01 Regular Procedure – With Repeater’

<Configuration of TE>
Same as ‘3B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE does not respond with RepeaterAuth_Send_ReceiverID_List within the 3 second timeout of the receipt of SKE_Send_Eks

<Test Case>
Same as ‘1B-02 Irregular Procedure – Timeout of Receiver ID list’
3B-03. Irregular Procedure – Verify V’

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the repeater provides a value for V’ that does not match V.

Required Test Method

<Connection Setup>

Same as ‘3B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘3B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE provides an incorrect value for V’

<Test Case>

Same as ‘1B-03 Irregular Procedure – Verify V’’
3B-04. Irregular Procedure – MAX_DEVS_EXCEEDED

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the repeater sets the MAX_DEVS_EXCEEDED bit in the RepeaterAuth_Send_ReceiverID_List message.

Required Test Method

<Connection Setup>

Same as ‘3B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘3B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE sets MAX_DEVS_EXCEEDED to ‘TRUE’ in RepeaterAuth_Send_ReceiverID_List message

<Test Case>

Same as ‘1B-04 Irregular Procedure – MAX_DEVS_EXCEEDED’
3B-05. Irregular Procedure – MAX_CASCADE_EXCEEDED

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the repeater sets the MAX_CASCADE_EXCEEDED bit in the RepeaterAuth_Send_ReceiverID_List message.

Required Test Method

<Connection Setup>

Same as ‘3B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘3B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE sets MAX_CASCADE_EXCEEDED to ‘TRUE’ in RepeaterAuth_Send_ReceiverID_List message

<Test Case>

Same as ‘1B-06 Irregular Procedure – MAX_CASCADE_EXCEEDED’
3B-06. Irregular Procedure – Rollover of seq_num_V

Test Objective

Verify the Repeater DUT initiates re-authentication when a rollover of seq_num_V is detected from the downstream repeater.

Required Test Method

<Connection Setup>

Same as ‘3B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘3B-01 Regular Procedure – With Repeater’

<Test Case>

Same as ‘1B-09 Irregular Procedure – Rollover of seq_num_V’
3B-07. Irregular Procedure – Failure of Content Stream Management

Test Objective
Verify the Repeater DUT re-attempts Content Stream Management following a failure of Content Stream Management.

Required Test Method

<Connection Setup>
Same as ‘3B-01 Regular Procedure – With Repeater’

<Configuration of TE>
Same as ‘3B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE provides an incorrect value for \(M \)

<Test Case>
Same as ‘1B-10 Irregular Procedure – Failure of Content Stream Management’
3C. **Upstream Procedure with Transmitter**

In this test, the DisplayPort Repeater DUT is tested under the following two connection setups:

- An HDCP2.2 DisplayPort Transmitter (TE pseudo-Source) is connected to the upstream HDCP2.2-protected Interface Port and an HDCP2.2 DisplayPort Receiver (TE pseudo-Sink) is connected to the downstream HDCP2.2-protected Interface Port of the Repeater DUT.

- An HDCP2.2 DisplayPort Transmitter (TE pseudo-Source) is connected to the upstream HDCP2.2-protected Interface Port and a DisplayPort HDCP2.2 Repeater (TE pseudo-Repeater) is connected to the downstream HDCP2.2-protected Interface Port of the DisplayPort Repeater DUT.

☐ **Repeater (DUT) Connected to Transmitter (TE pseudo-Source) and Receiver (TE pseudo-Sink)**

In this test, an HDCP2.2 DisplayPort Transmitter (TE pseudo-Source) is connected to the upstream HDCP2.2-protected Interface Port of the DisplayPort Repeater DUT. An HDCP2.2 DisplayPort Receiver (TE pseudo-Sink) is connected to the downstream HDCP2.2-protected Interface Port of the Repeater (DUT).

The operations of the DUT under 1, 2 and 4-lane Main Link configurations are tested.
3C-01. Regular Procedure – Transmitter – DUT – Receiver

Test Objective

Verify the Repeater DUT’s implementation of the HDCP2.2 Protocol when an HDCP2.2 Transmitter is connected to the upstream Repeater port and an HDCP2.2 Receiver is connected to the downstream Repeater port.

Required Test Method

<Connection Setup>

- Connect TE (pseudo-Source) to the upstream HDCP2.2-protected Interface Port of DUT
- Connect an HDCP Sink to the downstream HDCP-protected Interface Port of DUT

![Diagram]

Note: A device that has already passed the compliance test is used as the Sink device

<Test Case>

The steps described under [Before Starting Authentication] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Authentication and Key Exchange]

(STEP 2C-01-2) described in ‘2C-01 Regular Procedure – With Transmitter’ are performed, with the following changes:

- TE begins sending unencrypted video signal with HDCP2.2 Encryption disabled
- TE transmits AKE_Init message
- DUT transmits AKE_Send_Cert message
 - If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)
 - If REPEATER is ‘FALSE’ in AKE_Send_Cert message, then FAIL (Ref-2C-3)

The remaining steps described in [Authentication and Key Exchange] (both test cases) and the steps described in [Pairing], [Locality Check], and [Session Key Exchange] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Authentication with Repeaters]
(STEP 3C-01-1)

- DUT transmits RepeaterAuth_Send_ReceiverID_List message
 - If DUT does not transmit RepeaterAuth_Send_ReceiverID_List message within 3 second timeout of SKE_Send_Eks, then FAIL(Ref-1B-2)
 - If RepeaterAuth_Send_ReceiverID_List:MAX_DEVS_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)
 - If RepeaterAuth_Send_ReceiverID_List:MAX_CASCADE_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)
 - If RepeaterAuth_Send_ReceiverID_List:DEPTH is not one, then FAIL(Ref-3C-2)
 - If RepeaterAuth_Send_ReceiverID_List:DEVICE_COUNT is not one, then FAIL(Ref-3C-2)
 - If RepeaterAuth_Send_Receiver_ID_List:HDCP2_0_REPEATER_DOWNSTREAM is ‘TRUE’, then FAIL (Ref-3C-8)
 - If RepeaterAuth_Send_Receiver_ID_List:HDCP1_DEVICE_DOWNSTREAM is ‘TRUE’, then FAIL (Ref-3C-8)
 - If RepeaterAuth_Send_Receiver_ID_List:Seq_num_V is not 0, then FAIL (Ref-3C-7)

(STEP 3C-01-2)

- TE compares computed value of most significant 128 bits of V to 128 bits of V’ received in RepeaterAuth_Send_ReceiverID_list.
 - If most significant 128 bits of V’ do not match the most significant 128 bits of V, then FAIL (Ref-1B-2)

- TE transmits RepeaterAuth_Send_Ack message with valid least 128 bits of V within two second of receipt of RepeaterAuth_Send_ReceiverID_list

(STEP 3C-01-3)

[Content Stream Management] – Two test cases; both are performed.

[Test Case 1 – Content Stream Management done in serial with propagation of topology information]

- TE transmits RepeaterAuth_Stream_Manage message within 5seconds after transmitting RepeaterAuth_Send_Ack message with Type set to 0, and 100ms prior to the transmission of the corresponding Content Streams
[Test Case 2 – Content Stream Management done in parallel with propagation of topology information]

☐ TE transmits RepeaterAuth_Stream_Manage message within 5 seconds after successful completion exchange of Ks, with Type set to 0

[Both Test Cases]

☐ DUT transmits RepeaterAuth_Stream_Ready message

 ➢ If DUT does not transmit RepeaterAuth_Stream_Ready message within 100 ms of transmission of RepeaterAuth_Stream_Manage, then FAIL (Ref-1B-5)

 ➢ If the value of M’ received in the RepeaterAuth_Stream_Ready message does not match the TE’s calculated value of M, then FAIL (Ref-1B-5)

☐ TE Enables HDCP Encryption

(STEP 3C-01-4)

☐ If DUT completes the authentication process successfully, then PASS
3C-02. Regular Procedure – Receiver Disconnect Propagation when an Active Receiver is Disconnected Downstream

Test Objective

Verify the Repeater DUT sends an updated RepeaterAuth_Send_ReceiverID_List message when an active downstream Receiver is disconnected when HDCP Content is flowing.

Required Test Method

This test is performed if Repeater_MultipleOutputs = Y, otherwise SKIP

<Connection Setup>

- Connect TE (pseudo-Source) to the upstream HDCP2.2-protected Interface Port of DUT
- Connect TE (pseudo-Sink) to the one downstream HDCP2.2-protected Interface Port of DUT
- Connect HDCP2.2 Sink to another downstream HDCP-protected Interface Port of DUT

![Connection Diagram]

Note: A device that has already passed the DP HDCP2.2 compliance test is used as the Sink device

<Test Case>

The steps described under [Before Starting Authentication] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

The steps described under [Authentication and Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

The remaining steps described in [Authentication and Key Exchange] and the steps described in [Pairing], [Locality Check], and [Session Key Exchange] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Authentication with Repeaters]
(STEP 3C-01-1) described in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ is performed with the following changes:

- DUT transmits RepeaterAuth_Send_ReceiverID_List message
 - If DUT does not transmit RepeaterAuth_Send_ReceiverID_List message within 3 second timeout of SKE_Send_Eks, then FAIL(Ref-1B-2)
 - If RepeaterAuth_Send_ReceiverID_List:MAX_DEVS_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)
 - If RepeaterAuth_Send_ReceiverID_List:MAXCASCADE_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)
 - If RepeaterAuth_Send_ReceiverID_List:DEPTH is not one, then FAIL(Ref-3C-2)
 - If RepeaterAuth_Send_ReceiverID_List:DEVICE_COUNT is not two, then FAIL(Ref-3C-2)
 - If RepeaterAuth_Send_ReceiverID_List:HDCP2_0_REPEATER_DOWNSTREAM is ‘TRUE’, then FAIL.
 - If RepeaterAuth_Send_ReceiverID_List:HDCP1_DEVICE_DOWNSTREAM is ‘TRUE’, then FAIL.
 - If RepeaterAuth_Send_ReceiverID_List:seq_num_v is not 0, then FAIL (Ref-3C-7).

(STEP 3C-01-2) described in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ is performed

[Disconnect of Downstream Sink]

(STEP 3C-02-1)
- TE (pseudo-Sink) sends Receiver Disconnect Indication
 - If DUT transmits Receiver Disconnect upstream, then FAIL (Ref-3C-3)

(STEP 3C-02-2)
- DUT transmits RepeaterAuth_Send_ReceiverID_List message
 - If DUT does not transmit RepeaterAuth_Send_ReceiverID_List message within 3 second of TE (pseudo-Sink) disconnect, then FAIL(Ref-1B-2)
 - If RepeaterAuth_Send_ReceiverID_List:MAX_DEVSEXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)
If RepeaterAuth_Send_ReceiverID_List:MAX_CASCADE_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)

- If RepeaterAuth_Send_ReceiverID_List:DEPTH is not one, then FAIL(Ref-3C-2)

- If RepeaterAuth_Send_ReceiverID_List:DEVICE_COUNT is not one, then FAIL(Ref-3C-2)

- If content stream to remaining receiver is interrupted, then WARNING (Ref-3C-7)

If the DUT does not propagate Receiver Disconnect upstream when an active downstream Sink is disconnected, and transmits an updated RepeaterAuth_Send_ReceiverID_List message, then PASS
3C-03. Regular Procedure – Receiver Connected when an Active Receiver is Connected Downstream

Test Objective

Verify the Repeater DUT sends an updated RepeaterAuth_Send_ReceiverID_List message when a new active downstream Receiver is connected and HDCP Content is flowing.

Required Test Method

This test is performed if Repeater_MultipleOutputs = Y, otherwise SKIP

<Connection Setup>

Same as ‘3C-02 Regular Procedure – Receiver Disconnect Propagation when an Active Receiver is Disconnected Downstream’ with one exception:

- TE (pseudo-Sink) is in disconnected state

<Test Case>

The steps described under [Before Starting Authentication] to [Authentication with Repeaters] in ‘3C-02 Regular Procedure – Receiver Disconnect Propagation when an Active Receiver is Disconnected and Reconnected Downstream’ are performed.

[Connect Active Downstream Sink]

(STEP 3C-03-1)

□ TE (pseudo-Sink) sends Receiver Connect indication to DUT

 ➢ If DUT propagates Receiver Connect indication upstream, then FAIL (Ref-3C-3)

(STEP 3C-03-2)

□ DUT transmits RepeaterAuth_Send_ReceiverID_List message

 ➢ If DUT does not transmit RepeaterAuth_Send_ReceiverID_List message within 3 second of TE (pseudo-Sink) connect, then FAIL(Ref-1B-2)

 ➢ If RepeaterAuth_Send_ReceiverID_List:MAX_DEVS_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)

 ➢ If RepeaterAuth_Send_ReceiverID_List:MAXCASCADE_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)

 ➢ If RepeaterAuth_Send_ReceiverID_List:DEPTH is not one, then FAIL(Ref-3C-2)
- If `RepeaterAuth_Send_ReceiverID_List:DEVICE_COUNT` is not two, then FAIL(Ref-3C-2)
- If content stream to remaining receiver is interrupted, then WARNING (Ref-3C-3)

☐ If the DUT transmits updated `RepeaterAuth_Send_ReceiverID_List` message upon connection of a new downstream HDCP Receiver, then PASS
3C-04. Irregular Procedure – New Authentication after AKE_Init

Test Objective

Verify the Repeater DUT restarts authentication when a new AKE_Init and r_{tx} is transmitted right after the transmission of AKE_Init in the unauthenticated state.

Required Test Method

<Connection Setup>

Same as ‘3C-01 Regular Procedure – Transmitter – DUT - Receiver’

<Test Case>

Same as ‘2C-02 Irregular Procedure – New Authentication after AKE_Init’ with the following changes:

(STEP 2C-01-2)

- TE begins sending unencrypted video signal with HDCP Encryption disabled
- TE transmits AKE_Init message
- DUT transmits AKE_Send_Cert message
 - If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)
 - If AKE_Send_Cert:REPEATER is ‘FALSE’, then FAIL (Ref-2C-3)

The steps described under [Test Case 1 – Not Previously Connected Receiver ID] in ‘2C-01 Regular Procedure – With Transmitter’ are performed

- If DUT successfully completes authentication with new r_{tx} value provided in the second AKE_Init message, then PASS
3C-05. Irregular Procedure – New Authentication during Locality Check

Test Objective

Verify the Repeater DUT restarts authentication when a new AKE_Init and r_{rx} is transmitted right after the reception of LC_Init.

Required Test Method

<Connection Setup>

Same as ‘3C-01 Regular Procedure – Transmitter – DUT - Receiver’

<Test Case>

Same as ‘2C-03 Irregular Procedure – New Authentication during Locality Check’ with the following changes:

(STEP 2C-01-2)

- TE begins sending unencrypted video signal with HDCP Encryption disabled
- TE transmits AKE_Init message
- DUT transmits AKE_Send_Cert message
 - If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)
 - If AKE_Send_Cert:REPEATER is ‘FALSE’, then FAIL (Ref-2C-3)

The steps described under [Test Case 1 – Not Previously Connected Receiver ID] in ‘2C-01 Regular Procedure – With Transmitter’ are performed

- If DUT successfully completes authentication with new r_{rx} value provided in the second AKE_Init message, then PASS
3C-06. Irregular Procedure – New Authentication after SKE_Send_Eks

Test Objective
Verify the Repeater DUT restarts authentication when a new AKE_Init and rtx is transmitted right after the reception of SKE_Send_Eks.

Required Test Method

<Connection Setup>
Same as ‘3C-01 Regular Procedure – Transmitter – DUT - Receiver’

<Test Case>
Same as ‘2C-04 Irregular Procedure – New Authentication after SKE_Send_Eks’ with the following changes:

(STEP 2C-01-2)
- TE begins sending unencrypted video signal with HDCP Encryption disabled
- TE transmits AKE_Init message
- DUT transmits AKE_Send_Cert message
 - If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)
 - If AKE_Send_Cert:REPEATER is ‘FALSE’, then FAIL (Ref-2C-3)

The steps described under [Test Case 1 –Not Previously Connected Receiver ID] in ‘2C-01 Regular Procedure – With Transmitter’ are performed

- If DUT successfully completes authentication with new rtx value provided in the second AKE_Init message, then PASS
3C-07. Irregular Procedure – New Authentication during Link Synchronization

Test Objective

Verify the Repeater DUT restarts authentication when a new AKE_Init and rtx is transmitted during Link Synchronization.

Required Test Method

<Connection Setup>

Same as ‘3C-01 Regular Procedure – Transmitter – DUT - Receiver’

<Test Case>

Same as ‘2C-05 Irregular Procedure – New Authentication during Link Synchronization’ with the following changes:

(STEP 2C-01-2)

- TE begins sending unencrypted video signal with HDCP Encryption disabled
- TE transmits AKE_Init message
- DUT transmits AKE_Send_Cert message
 - If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)
 - If AKE_Send_Cert:REPEATER is ‘FALSE’, then FAIL (Ref-2C-3)

The steps described under [Test Case 1 – Previously Connected Receiver ID] in ‘2C-01 Regular Procedure – With Transmitter’ are performed

- If DUT successfully completes authentication with new \(r_{rx} \) value provided in the second AKE_Init message, then PASS
3C-08. Irregular Procedure – Rx Certificate invalid

Test Objective

Verify the Repeater DUT considers it a failure of authentication and does not send RepeaterAuth_Send_ReceiverID List message when the certificate received from the Receiver is invalid.

Required Test Method

<Connection Setup>

☐ Connect TE (pseudo-Source) to the upstream HDCP-protected Interface Port of DUT

☐ Connect TE (pseudo-Sink) to the downstream HDCP-protected Interface Port of DUT

<Configuration of TE (pseudo-Sink)>

Same as ‘1A-08 Irregular Procedure – Verify Receiver Certificate’

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

[Authentication with Repeaters]

(STEP 3C-08-1)

☐ DUT reads invalid certificate of downstream pseudo-Sink

➢ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

➢ If DUT transmits AKE_No_Stored_km or AKE_Stored_km, then FAIL (Ref-1A-8)

(STEP 3C-08-2)

☐ TE (pseudo-Source) waits for DUT to transmit RepeaterAuth_Send_ReceiverID_List message for a maximum time of 3 seconds

➢ If DUT transmits RepeaterAuth_Send_ReceiverID_List message, then FAIL (Ref-3C-5)
If DUT treats invalid downstream certificate as an authentication failure and does not transmit RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
3C-09. Irregular Procedure – Invalid H’

Test Objective

Verify the Repeater DUT considers it a failure of authentication and does not send RepeaterAuth_Send_ReceiverID_List message when the Receiver provides a value for H’ that does not match H; or does not respond with H’ in the allotted time.

Required Test Method

<Connection Setup>

Same as ‘3C-08 Irregular Procedure – Rx Certificate invalid’

<Configuration of TE (pseudo-Sink)>

Same as ‘1A-10 Irregular Procedure – Invalid H’

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

[Authentication with Repeaters]

Two test cases; both are performed

[Test Case 1 – Invalid H’]

(STEP 3C-09-1)

- DUT reads invalid H’ of downstream pseudo-Sink
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
 - If DUT transmits LC_Init, then FAIL (Ref-1A-8)

[Test Case 2 – AKE_Send_H_prime timeout after AKE_Stored_km]

(STEP 3C-09-2)

- TE (pseudo-Sink) does not provide AKE_Send_H_prime message within 200ms timeout at the DUT
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
 - If DUT transmits LC_Init, then FAIL (Ref-1A-8)

[Both Test Cases]
(STEP 3C-09-3)

- TE (pseudo-Source) waits for DUT to transmit RepeaterAuth_Send_ReceiverID_List message for a maximum time of 3 seconds
 - If DUT transmits RepeaterAuth_Send_ReceiverID_List message, then FAIL (Ref-3C-5)

- If DUT treats invalid downstream H’ or timeout of AKE_Send_H_prime as an authentication failure and does not transmit RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
3C-10. Irregular Procedure – Locality Failure

Test Objective

Verify the Repeater DUT considers it a failure of authentication and does not send RepeaterAuth_Send_ReceiverID_List message when the Receiver provides a value for L’ that does not match L.

Required Test Method

<Connection Setup>

Same as ‘3C-08 Irregular Procedure – Rx Certificate invalid’

<Configuration of TE (pseudo-Sink)>

Same as ‘1A-12 Irregular Procedure – Locality Failure’

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

[Authentication with Repeaters]

(STEP 3C-10-1)

☐ DUT reads invalid L’ of downstream pseudo-Sink

➢ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

☐ DUT reattempts locality check with the transmission of LC_Init 1023 additional times (for a total max of 1024 trials) with new Rn

➢ If Rn is not different in each attempt then FAIL

➢ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

(STEP 3C-10-2)

☐ TE (pseudo-Source) waits for DUT to transmit RepeaterAuth_Send_ReceiverID_List message for a maximum time of 3 seconds

➢ If DUT transmits RepeaterAuth_Send_ReceiverID_List message, then FAIL (Ref-3C-5)

☐ If DUT treats invalid downstream L’ as an authentication failure and does not transmit RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
☐ **Repeater (DUT) Connected to Transmitter (TE pseudo-Source) and Repeater (TE pseudo-Repeater)**

In this test, DP HDCP2.2 Transmitter (TE pseudo-Source) is connected to the upstream HDCP2.2-protected Interface Port of the DP Repeater DUT. An HDCP2.2 DP Repeater (TE pseudo-Repeater) is connected to the downstream HDCP2.2-protected Interface Port of the Repeater (DUT).
3C-11. Regular Procedure – Transmitter – DUT – Repeater (With stored km)

Test Objective
Verify the DP HDCP2.2 Repeater DUT’s implementation of the HDCP2.2 Protocol when a DP HDCP2.2 Transmitter is connected to the upstream Repeater port and an HDCP2.2 Repeater is connected to the downstream Repeater port.

Required Test Method

<Connection Setup>
- Connect TE (pseudo-Source) to the upstream HDCP-protected Interface Port of DUT
- Connect an HDCP Repeater and HDCP Sink to the downstream HDCP-protected Interface Port of DUT

Note: Devices that have already passed the compliance test are used as the Repeater and Sink devices.

Note: Downstream Repeater and Sink need to be HDCP 2.2 compatible devices.

<Test Case>
The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed, with the following changes:

[Authentication with Repeaters]

(STEP 3C-11-1)
- DUT transmits RepeaterAuth_Send_ReceiverID_List message
 - If DUT does not transmit RepeaterAuth_Send_ReceiverID_List message within 3 second timeout of SKE_Send_Eks, then FAIL(Ref-1B-2)
 - If RepeaterAuth_Send_ReceiverID_List:MAX_DEVS_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)
 - If RepeaterAuth_Send_ReceiverID_List:MAX.Cascade.EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)
 - If RepeaterAuth_Send_ReceiverID_List:DEPTH is not two, then FAIL(Ref-3C-2)
If RepeaterAuth_Send_ReceiverID_List:DEVICE_COUNT is not two, then FAIL(Ref-3C-2)

If RepeaterAuth_Send_ReceiverID_List:HDCP2_0_REPEATER_DOWNSTREAM is ‘TRUE’, then FAIL (Ref-3C-8)

If RepeaterAuth_Send_ReceiverID_List:HDCP1_DEVICE_DOWNSTREAM is ‘TRUE’, then FAIL (Ref-3C-8)

If RepeaterAuth_Send_ReceiverID_List:V’ is not valid 128 bits, then FAIL (Ref-1B-4)

The remaining steps including (STEP 3C-01-2) described in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed

☐ If DUT completes the authentication process successfully, then PASS
3C-12. Regular Procedure – Receiver disconnect after AKE_Init

Test Objective

Verify the Repeater DUT propagates Receiver Disconnect and Receiver Connect Indication on Repeater disconnect and connect, respectively.

Required Test Method

<Connection Setup>

- Connect TE (pseudo-Source) to the upstream HDCP-protected Interface Port of DUT
- Connect TE (pseudo-Repeater) to the downstream HDCP-protected Interface Port of DUT

<Configuration of TE (pseudo-Repeater)>

<table>
<thead>
<tr>
<th>Message:</th>
<th>Parameter:</th>
<th>Value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication and Key Exchange</td>
<td>AKE_Send_Cert</td>
<td>RxCaps:VERSION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RxCaps:RECEIVER_CAPABILITY_MASK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RxCaps:REPEATER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RxCaps:HDCP_CAPABLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rrx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>certrx</td>
</tr>
<tr>
<td></td>
<td>AKE_Send_H_prime</td>
<td>H’</td>
</tr>
<tr>
<td>Pairing</td>
<td>AKE_Send_Pairing_Info</td>
<td>Ekh_km</td>
</tr>
<tr>
<td>Locality Check</td>
<td>LC_Send_L_prime</td>
<td>L’</td>
</tr>
<tr>
<td>Authentication with Repeater</td>
<td>RepeaterAuth_Send_ReceiverID_List</td>
<td>RxInfo:MAX_DEVS_EXCEEDED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RxInfo:MAX.Cascade_EXCEEDED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RxInfo:HDCP2.0.REPEATER_DOWNSTREAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RxInfo:HDCP1.DEVICE_DOWNSTREAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RxInfo:DEVICE_COUNT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RxInfo:DEPTH</td>
</tr>
</tbody>
</table>
<Test Case>

The steps described under [Before Starting Authentication] to [Authentication and Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

[Authentication and Key Exchange]

STEP 3C-12-1

- TE (pseudo-Repeater) sends *Receiver Disconnect Indication* after AKE_Init message
- DUT either
 - (a) sets REAUTH_REQ in RxStatus register and clears REPEATER in RxCaps of AKE_Send_Cert message
 - or
 - (b) Send *Receiver Disconnect Indication* to upstream TE (Pseudo-Source)
 - If DUT does not
 - (a) set REAUTH_REQ in RxStatus and clear REPEATER in RxCaps of AKE_Send_Cert message
 - or
 - (b) Send *Receiver Disconnect Indication* to TE(pseudo-Source), then FAIL(Ref-3C-4)

STEP 3C-12-2

- TE (pseudo-Repeater) sends *Receiver Connect Indication*
- DUT either
 - (a) sets REAUTH_REQ in RxStatus register and REPEATER in RxCaps of AKE_Send_Cert message
 - or
 - (b) Send *Receiver Connect Indication* to upstream TE (Pseudo-Source)
 - If DUT does not
 - (a) set REAUTH_REQ in RxStatus and REPEATER in RxCaps of AKE_Send_Cert message
or

(b) Send Receiver Connect Indication to TE(pseudo-Source), then FAIL(Ref-3C-4)

- If DUT sends Receiver Connect Indication before TE(pseudo-Repeater) and REPEATER is set in RxCaps of AKE_Send_Cert message, then FAIL(Ref-3C-4)

(STEP 3C-12-3)

☐ TE (pseudo-Source) restarts Authentication and Key Exchange with DUT

☐ DUT restarts Authentication and Key Exchange with downstream TE(Pseudo-repeater)

- If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure- With previously connected Receiver (With stored Km)’, then FAIL (Ref-1A-7)

- If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

☐ If DUT either properly sets and clears REAUTH_REQ in RxStatus register and REPEATER in AKE_Send_Cert message, or propagates the de-asserted and re-asserted HPD on Repeater disconnect and connect respectively, then PASS
3C-13. Regular Procedure – Receiver disconnect after \(k_m \)

Test Objective

Verify the Repeater DUT restarts authentication after the Repeater is disconnected and reconnected following the exchange of \(k_m \).

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular – Receiver disconnect after AKE_Init’

<Test Case>

The steps described under [Before Starting Authentication] to [Authentication and Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

[Authentication and Key Exchange]

(STEP 3C-13-1)

- TE (pseudo-Repeater) sends *Receiver Disconnect Indication* after AKE_Stored_Km or AKE_No_Stored_Km message

- DUT either
 - (a) sets REAUTH_REQ in RxStatus register and asserts CP_IRQ interrupt and clears REPEATER in RxCaps of AKE_Send_Cert message

 or

 - (b) Send *Receiver Disconnect Indication* to upstream TE (Pseudo-Source).
 - If DUT does not
 - (a) set REAUTH_REQ in RxStatus register and asserts CP_IRQ interrupt and clear REPEATER in RxCaps of AKE_Send_Cert message

 or

 - (b) Send *Receiver Disconnect Indication* to TE(pseudo-Source), then

 FAIL(Ref-3C-4)

(STEP 3C-13-2)

- TE (pseudo-Repeater) sends *Receiver Connect Indication*
DUT either

(a) sets REAUTH_REQ in RxStatus register, asserts CP_IRQ interrupt and REPEATER in RxCaps of AKE_Send_Cert message

or

(b) Send Receiver Connect Indication to upstream TE (Pseudo-Source)
 - If DUT does not
 (a) set REAUTH_REQ in RxStatus, asserts CP_IRQ interrupt and REPEATER in RxCaps of AKE_Send_Cert message
 or
 (b) Send Receiver Connect Indication to TE(pseudo-Source), then FAIL(Ref-3C-4)
 - If DUT sends Receiver Connect Indication before TE(pseudo-Repeater) and REPEATER is set in RxCaps of AKE_Send_Cert message, then FAIL(Ref-3C-4)

(STEP 3C-13-3)

- TE (pseudo-Source) restarts Authentication and Key Exchange with DUT
- DUT restarts Authentication and Key Exchange with downstream TE(Pseudo-repeater)
 - If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure- With previously connected Receiver (With stored Km)’, then FAIL (Ref-1A-7)
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
- If DUT either properly sets and clears REAUTH_REQ in RxStatus register and REPEATER in AKE_Send_Cert message, or propagates the de-asserted and re-asserted HPD on Repeater disconnect and connect respectively, then PASS
3C-14. Regular Procedure – Receiver disconnect after locality check

Test Objective

Verify the Repeater DUT restarts authentication after the Repeater is disconnected and reconnected after locality check is initiated.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Test Case>

The steps described under [Before Starting Authentication] to [Locality Check] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

[Locality Check]

(STEP 3C-14-1)

- TE (pseudo-Repeater) sends *Receiver Disconnect Indication* after LC_init message.
- DUT either
 - (a) sets REAUTH_REQ in RxStatus register, asserts CP_IRQ interrupt and clears REPEATER in RxCaps of AKE_Send_Cert message
 - or
 - (b) Send *Receiver Disconnect Indication* to upstream TE (Pseudo-Source).
 - If DUT does not
 - (a) set REAUTH_REQ in RxStatus, asserts CP_IRQ interrupt and clear REPEATER in RxCaps of AKE_Send_Cert message
 - or
 - (b) Send *Receiver Disconnect Indication* to TE(pseudo-Source), then FAIL(Ref-3C-4)

(STEP 3C-14-2)

- TE (pseudo-Repeater) sends *Receiver Connect Indication*
- DUT either
(a) sets REAUTH_REQ in RxStatus register, asserts CP_IRQ interrupt and REPEATER in RxCaps of AKE_Send_Cert message

or

(b) Send Receiver Connect Indication to upstream TE (Pseudo-Source)
 ➢ If DUT does not
 (a) set REAUTH_REQ in RxStatus, asserts CP_IRQ interrupt and REPEATER in RxCaps of AKE_Send_Cert message
 or
 (b) Send Receiver Connect Indication to TE(pseudo-Source), then FAIL(Ref-3C-4)
 ➢ If DUT sends Receiver Connect Indication before TE(pseudo-Repeater) and REPEATER is set in RxCaps of AKE_Send_Cert message, then FAIL(Ref-3C-4)

(STEP 3C-14-3)

☐ TE (pseudo-Source) restarts Authentication and Key Exchange with DUT

☐ DUT restarts Authentication and Key Exchange with downstream TE(Pseudo-repeater)
 ➢ If DUT does not restart Authentication and Key Exchange and complete(STEP 1A-01-2) as described in ‘1A-01 Regular Procedure- With previously connected Receiver (With stored Km)’, then FAIL (Ref-1A-7)
 ➢ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

☐ If DUT either properly sets and clears REAUTH_REQ in RxStatus register and REPEATER in AKE_Send_Cert message, or propagates the de-asserted and re-asserted HPD on Repeater disconnect and connect respectively, then PASS
3C-15. Regular Procedure – Receiver disconnect after K_s

Test Objective

Verify the Repeater DUT restarts authentication after the Repeater is disconnected and reconnected following the exchange of K_s.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Test Case>

The steps described under [Before Starting Authentication] through [Locality Check] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

[Session Key Exchange]

(STEP 3C-15-1)

- TE (pseudo-Repeater) sends Receiver Disconnect Indication after SKE_Send_Eks message.
- DUT either
 - (a) sets REAUTH_REQ in RxStatus register, asserts CP_IRQ interrupt and clears REPEATER in RxCaps of AKE_Send_Cert message
 or
 - (b) Send Receiver Disconnect Indication to upstream TE(Pseudo-Source).
 ➢ If DUT does not
 - (a) set REAUTH_REQ in RxStatus, asserts CP_IRQ interrupt and clear REPEATER in RxCaps of AKE_Send_Cert message
 - (b) Send Receiver Disconnect Indication to TE(pseudo-Source), then FAIL(Ref-3C-4)

(STEP 3C-15-2)

- TE (pseudo-Repeater) sends Receiver Connect Indication
DUT either

(a) sets REAUTH_REQ in RxStatus register, asserts CP_IRQ interrupt and REPEATER in RxCaps of AKE_Send_Cert message

or

(b) Send Receiver Connect Indication to upstream TE (Pseudo-Source).
 ➢ If DUT does not
 (a) set REAUTH_REQ in RxStatus, asserts CP_IRQ interrupt and REPEATER in RxCaps of AKE_Send_Cert message
 or
 (b) Send Receiver Connect Indication to TE(pseudo-Source), then FAIL(Ref-3C-4)
 ➢ If DUT sends Receiver Connect Indication before TE(pseudo-Repeater) and REPEATER is set in RxCaps of AKE_Send_Cert message, then FAIL(Ref-3C-4)

(STEP 3C-15-3)

□ TE (pseudo-Source) restarts Authentication and Key Exchange with DUT.

□ DUT restarts Authentication and Key Exchange with downstream TE(Pseudo-repeater)
 ➢ If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure- With previously connected Receiver (With stored Km), then FAIL (Ref-1A-7)
 ➢ If DUT enables HDCP Encryption but fails to turn it off before restarting Authentication, then FAIL (Ref-1A-2)

□ If DUT either properly sets and clears REAUTH_REQ in RxStatus register and REPEATER in AKE_Send_Cert message, or propagates the de-asserted and re-asserted HPD on Repeater disconnect and connect respectively, then PASS
3C-16. Irregular Procedure – Timeout of Receiver ID list

Test Objective
Verify the Repeater DUT considers it a failure of authentication and does not send RepeaterAuth_Send_ReceiverID_List message when the downstream repeater fails to provide RepeaterAuth_Send_ReceiverID_List message prior to expiration of the watchdog timer.

Required Test Method

<Connection Setup>
Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>
Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Test Case>
The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-12 Regular Procedure – Transmitter – DUT – Repeater (With stored k_m)’ are performed.

[Authentication with Repeaters]

(STEP 3C-16-1)
☐ DUT waits maximum of 3 seconds for downstream TE (pseudo-Repeater) to send RepeaterAuth_Send_ReceiverID_List

(STEP 3C-16-2)
☐ DUT disables HDCP encryption, if enabled, after the expiration of the three second timer
 ➢ If DUT disables encryption before the timer expires, then FAIL (Ref-1B-2)
 ➢ If DUT does not disable encryption after the timer expires, then FAIL (Ref-1B-2)
 ➢ If DUT sends RepeaterAuth_Send_Ack message, then FAIL (Ref-1B-2)

(STEP 3C-16-3)
☐ DUT does not transmit RepeaterAuth_Send_ReceiverID_List to TE (pseudo-Source)
 ➢ If DUT transmits RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-5)

☐ If DUT treats timeout of watchdog timer for RepeaterAuth_Send_ReceiverID_List from downstream TE pseudo-Repeater as an authentication failure and does not transmit RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
3C-17. Irregular Procedure – Verify V’

Test Objective

Verify the Repeater DUT considers it a failure of authentication and does not send RepeaterAuth_Send_ReceiverID_List message when the downstream repeater provides a value for V’ that does not match V.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘1B-03 Irregular Procedure – Verify V’’

<Test Case>

Same as ‘1B-03 Irregular Procedure – Verify V’’

[Authentication with Repeaters]

(STEP 3C-17-1)

- DUT does not transmit RepeaterAuth_Send_ReceiverID_List to TE (pseudo-Source)
 - If DUT transmits RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-5)
- If DUT treats the mismatch of V and invalid V’ from downstream TE pseudo-Repeater as an authentication failure and does not transmit RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
3C-18. Irregular Procedure – DEVICE_COUNT

Test Objective

Verify the Repeater DUT asserts MAX DEVS EXCEEDED bit in RepeaterAuth_Send_ReceiverID_List message if the computed DEVICE_COUNT exceeds 31.

Required Test Method

<Connection Setup>

Same as ’3C-13 Regular Procedure – Propagation of HDCP2_0_REPEATER_DOWNSTREAM flag’

<Configuration of TE (pseudo-Repeater)>

Same as ’3C-12 Regular Procedure – Transmitter – DUT – Repeater (With stored km)’ except for the following change:

☐ TE (pseudo-Repeater) sets DEVICE_COUNT = 31

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ’3C-12 Regular Procedure – Transmitter – DUT – Repeater (With stored km)’ are performed.

[Authentication with Repeaters]

(STEP 3C-18-1)

☐ TE (pseudo-Repeater) sends RepeaterAuth_Send_ReceiverID_List

☐ DUT enables HDCP encryption, if enabled, after computing DEVICE_COUNT

➤ If DUT disables encryption before TE (pseudo-Repeater) transmits RepeaterAuth_Send_ReceiverID_List message, then FAIL (Ref-3C-1)

➤ If DUT does not disable encryption after computing DEVICE_COUNT, then FAIL (Ref-3C-1)

(STEP 3C-18-2)

☐ DUT sets MAX DEVS EXCEEDED flag and transmits RepeaterAuth_Send_ReceiverID_List to TE (pseudo-source)

➤ If DUT does not transmit RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-1)

➤ If MAX DEVS EXCEEDED is ‘FALSE’, then FAIL (Ref-3C-1)
☐ If DUT considers it an authentication failure when topology maximums are exceeded and signals MAX_DEVS_EXCEEDED error in RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
3C-19. Irregular Procedure – DEPTH

Test Objective

Verify the Repeater DUT asserts MAX_CASCADE_EXCEEDED bit in RepeaterAuth_Send_ReceiverID_List message if the computed DEPTH for it exceeds four.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

.Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’ except for the following change:

□ TE (pseudo-Repeater) sets DEPTH = 4

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-12 Regular Procedure – Transmitter – DUT – Repeater (With stored km)’ are performed.

[Authentication with Repeaters]

(STEP 3C-19-1)

□ TE (pseudo-Repeater) sends RepeaterAuth_Send_ReceiverID_List

□ DUT disables HDCP encryption, if enabled, after computing DEPTH

➢ If DUT disables encryption before TE (pseudo-Repeater) transmits RepeaterAuth_Send_ReceiverID_List message, then FAIL (Ref-3C-1)

➢ If DUT does not disable encryption after computing DEPTH, then FAIL (Ref-3C-1)

(STEP 3C-19-2)

□ DUT sets MAX_CASCADE_EXCEEDED flag and transmits RepeaterAuth_Send_ReceiverID_List to TE (pseudo-source)

➢ If DUT does not transmit RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-1)

➢ If MAX_CASCADE_EXCEEDED is ‘FALSE’, then FAIL (Ref-3C-1)
☐ If DUT considers it an authentication failure when topology maximums are exceeded and signals MAX_CASCADE_EXCEEDED error in RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
3C-20. Irregular Procedure – MAX_DEVS_EXCEEDED

Test Objective

Verify the Repeater DUT asserts MAX_DEVS_EXCEEDED bit in RepeaterAuth_Send_ReceiverID_List message when it receives a MAX_DEVS_EXCEEDED status from the downstream pseudo-Repeater.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘1B-04 Irregular Procedure – MAX_DEVICES_EXCEEDED’

<Test Case>

Same as ‘1B-04 Irregular Procedure – MAX_DEVICES_EXCEEDED’

[Authentication with Repeaters]

(STEP 3C-20-1)

☐ DUT sets MAX_DEVS_EXCEEDED flag and transmits RepeaterAuth_Send_ReceiverID_List to TE (pseudo-source)

➤ If DUT does not transmit RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-1)

➤ If MAX_DEVS_EXCEEDED is ‘FALSE’, then FAIL (Ref-3C-1)

☐ If DUT treats the reception of MAX_DEVS_EXCEEDED from downstream TE pseudo-Repeater as an authentication failure and signals MAX_DEVS_EXCEEDED error in RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
3C-21. Irregular Procedure – MAX_CASCADE_EXCEEDED

Test Objective

Verify the Repeater DUT asserts MAX_CASCADE_EXCEEDED bit in RepeaterAuth_Send_ReceiverID_List message when it receives a MAX_CASCADE_EXCEEDED status from the downstream pseudo-Repeater.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘1B-05 Irregular Procedure – MAX_CASCADE_EXCEEDED’

<Test Case>

Same as ‘1B-05 Irregular Procedure – MAX_CASCADE_EXCEEDED’

[Authentication with Repeaters]

(STEP 3C-21-1)

☐ DUT sets MAX_CASCADE_EXCEEDED flag and transmits RepeaterAuth_Send_ReceiverID_List to TE (pseudo-source)
 ➢ If DUT does not transmit RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-1)
 ➢ If MAX_CASCADE_EXCEEDED is ‘FALSE’, then FAIL (Ref-3C-1)

☐ If DUT treats the reception of MAX_CASCADE_EXCEEDED from downstream TE pseudo-Repeater as an authentication failure and signals MAX_CASCADE_EXCEEDED error in RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source) and does not transmit RepeaterAuth_Send_Ack to downstream TE(pseudo-Repeater), then PASS
3C-22. Regular Procedure – Repeater with zero downstream device

Test Objective

Verify the Repeater DUT having no downstream devices either do the authentication with upstream as a Receiver or does not do the authentication.

Required Test Method

<Connection Setup>

- Connect TE(pseudo-Source) to the upstream HDCP-protected Interface Port of DUT

![Diagram showing connection between DP HDCP2.2 TE (pseudo-Source) and DP HDCP2.2 DUT (Repeater)]

<Test Case>

DUT (Repeater) should follow either one of two possible cases.

[Test Case 1: No authentication]

(STEP 3C-22-1)

- DUT Send Receiver disconnect Indication to TE(pseudo-Source)
 - If DUT sends Receiver Connect Indication, then FAIL (Ref-3C-6)
 - If DUT keeps Receiver disconnect Indication so that TE(pseudo-Source) does not start authentication, then PASS (Ref-3C-6)

[Test Case 2: Authentication as a Receiver]

(STEP 3C-22-2)

- DUT Send Receiver Connect Indication to TE(pseudo-Source)
 - If DUT performs authentication as a Receiver instead of a Repeater(Ref-3C-6)
 - If DUT follows the steps specified in “2C-01 Regular Procedure – with transmitter”, then PASS Otherwise, FAIL
3C-23. **Regular Procedure – Propagation of HDCP2_0_REPEATER_DOWNSTREAM flag**

Test Objective

Verify the Repeater DUT propagates the HDCP2_0_REPEATER_DOWNSTREAM flag upstream when provided by the downstream repeater in RepeaterAuth_Send_ReceiverID_list message.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’ except for the following change:

- TE (pseudo-Repeater) sets HDCP2_0_REPEATER_DOWNSTREAM to ‘1’

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-11 Regular Procedure – Transmitter – DUT – Repeater (With stored km)’ are performed.

[Authentication with Repeaters]

(STEP 3C-23-1)

- TE (pseudo-Repeater) sends RepeaterAuth_Send_ReceiverID_List

(STEP 3C-23-2)

- DUT transmits RepeaterAuth_Send_ReceiverID_List to TE (pseudo-Source)

 - If DUT does not transmit RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-5)

 - If DUT does not report HDCP2_0_REPEATER_DOWNSTREAM = 1 in RepeaterAuth_Send_ReceiverID_list, then FAIL (Ref-3C-8)

- If DUT propagates downstream indication of HDCP2_0_REPEATER_DOWNSTREAM status to upstream TE (pseudo-Source) as part of RepeaterAuth_Send_ReceiverID_List, then PASS
3C-24. Regular Procedure – Propagation of HDCP1_DEVICE_DOWNSTREAM flag

Test Objective

Verify the Repeater DUT propagates the HDCP1_DEVICE_DOWNSTREAM flag upstream when provided by the downstream repeater in RepeaterAuth_Send_ReceiverID_list message.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’ except for the following change:

☐ TE (pseudo-Repeater) sets HDCP1DEVICE_DOWNSTREAM to ‘1’

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-11 Regular Procedure – Transmitter – DUT – Repeater (With stored km)’ are performed

[Authentication with Repeaters]

(STEP 3C-24-1)

☐ TE (pseudo-Repeater) sends RepeaterAuth_Send_ReceiverID_List

(STEP 3C-24-2)

☐ DUT transmits RepeaterAuth_Send_ReceiverID_List to TE (pseudo-Source)

☑ If DUT does not transmit RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-5)

☑ If DUT does not report HDCP1DEVICE_DOWNSTREAM = 1 in RepeaterAuth_Send_ReceiverID_list, then FAIL (Ref-3C-8)

☐ If DUT propagates downstream indication of HDCP1DEVICE_DOWNSTREAM status to upstream TE (pseudo-Source) as part of RepeaterAuth_Send_ReceiverID_List, then PASS

3C-25. Regular Procedure – Content Stream Management

Test Objective

Verify the Repeater DUT propagates the Content Stream Management function as determined by the upstream source.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Test Case>

The steps described under [Before Starting Authentication] to [Authentication with Repeaters] in ‘3C-12 Regular Procedure – Transmitter – DUT – Repeater (With stored km)’ are performed.

(STEP 3C-25-1)

☐ TE (pseudo-Source) sends RepeaterAuth_Stream_Manage message

(STEP 3C-25-2)

☐ DUT transmits RepeaterAuth_Stream_Ready message within 100ms

➤ If DUT does not transmit RepeaterAuth_Stream_Ready message within 100ms, then FAIL (Ref-1B-5)

➤ If M’ provided in RepeaterAuth_Stream_Ready message does not match TE’s calculation of M, then FAIL (Ref-1B-5)

(STEP 3C-25-3)

☐ DUT sends RepeaterAuth_Stream_Manage message to TE (pseudo-Repeater)

➤ If DUT does not transmit RepeaterAuth_Stream_Manage message at least 100ms before transmitting the corresponding Content Stream, then FAIL (Ref-1B-5)

[Three test cases; all are performed]

[Test case 1 – Valid M’]
(STEP 3C-25-4)

☐ TE responds with RepeaterAuth_Stream_Ready message within 100ms with valid M’

☐ DUT transmits stream

➤ If DUT does not transmit stream referenced in RepeaterAuth_Stream_Manage message, then FAIL (Ref-1B-5)

➤ If DUT transmits Content Stream earlier than 100ms after transmission of RepeaterAuth_Stream_Manage message, then FAIL (Ref-1B-5)

[Test case 2 –Invalid M’]

(STEP 3C-25-5)

☐ TE responds with RepeaterAuth_Stream_Ready message within 100ms with invalid M’

☐ DUT does not transmit stream

➤ If DUT transmits stream referenced in RepeaterAuth_Stream_Manage message, then FAIL (Ref-1B-5)
4. Reference

Refer to the High-bandwidth Digital Content Protection System – Mapping HDCP to DisplayPort Revision 2.2.

Ref-1A. Downstream procedure with Receiver

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8 HDCP Transmitter State Diagram Page 25</td>
<td>Transmitter’s decision to begin authentication is dependent on events such as Detection of an HDCP Receiver, availability of premium content or other implementation dependent details in the transmitter. In the event of authentication failure, an HDCP Receiver must be prepared to process subsequent authentication attempts. The HDCP Transmitter may cease to attempt authentication for transmitter-specific reasons, which include receiving a Receiver Disconnected Indication or after a certain number of authentication re-attempts by the transmitter. The transmitter must not initiate authentication unless it determines that the receiver is HDCP-capable.</td>
</tr>
</tbody>
</table>

Ref-1A-2.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>State H1: Transmit Low-value Content Page 27</td>
<td>State H1: Transmit Low-value Content. In this state the transmitter should begin sending an unencrypted signal with HDCP Encryption disabled. The transmitted signal can be a low value content or informative on-screen display. This will ensure that a valid video signal is displayed to the user before and during authentication. If content protection is desired by the upstream content control function, then the HDCP Transmitter should immediately attempt to determine whether the receiver is HDCP capable.</td>
</tr>
<tr>
<td>State A5: Authenticated Page 29</td>
<td>State A5: Authenticated. At this time, and at no prior time, the HDCP Transmitter has completed the authentication protocol. A periodic Link Synchronization is performed to maintain cipher synchronization between HDCP Transmitter and HDCP Receiver.</td>
</tr>
</tbody>
</table>

Ref-1A-3.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Authentication and Key Exchange Page 11</td>
<td>Authentication and Key Exchange (AKE) is the first step in the authentication protocol. Figure 2.1 and Figure 2.2 illustrates the AKE. The HDCP Transmitter (Device A) can initiate authentication at any time, even before a previous authentication exchange has completed. The HDCP Transmitter initiates a new HDCP Session by sending a new (r_{ex}) and TxCaps as part of the</td>
</tr>
</tbody>
</table>

Page 115 of 132
authentication initiation message, AKE_Init. Message formats are defined in Section 4.2.

The HDCP Transmitter must not attempt to read AKE_Send_Cert sooner than 100ms after writing the AKE_Init message. If AKE_Send_Cert message is not available for the transmitter to read within 100ms, the transmitter aborts the authentication protocol.

Note: The HDCP Transmitter may use mechanisms outside the scope of the HDCP Specification to determine whether the HDCP Receiver is an HDCP 2.2-compliant Device.

| State A1: Exchange K_m | State A1: Exchange K_m. In this state, the HDCP Transmitter initiates authentication by writing AKE_Init message to the HDCP Receiver. It reads AKE_Send_Cert from the receiver within 100ms after writing the AKE_Init message. If the HDCP Transmitter does not have km stored corresponding to the Receiver ID, it generates Ekpub(km) and sends Ekpub(km) as part of the AKE_No_Stored_km message to the receiver after verification of signature on certrx. It performs integrity check on the SRM and checks to see whether the Receiver ID of the connected HDCP Device is in the revocation list. Receiver computed H' and then asserts $H'_\text{-AVAILABLE}$ bit and generates CP_IRQ. Transmitter computes H, reads AKE_Send_H_prime message from the receiver containing H' within one second after writing AKE_No_Stored_km to the receiver and compares H' against H. If the HDCP Transmitter has km stored corresponding to the Receiver ID, it writes AKE_Stored_km message containing Ekh(km) and m to the receiver, performs integrity check on the SRM, checks to see whether the Receiver ID of the connected HDCP Device is in the revocation list. It computes H, reads AKE_Send_H_prime message from the receiver containing H' within 200ms after sending AKE_Stored_km to the receiver and compares H' against H. If the HDCP Transmitter does not have a km stored corresponding to the Receiver ID, it implements pairing with the HDCP receiver as explained in Section 2.2.1. |

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
</table>
| 2.2.1 Pairing Page 14 | To speed up the AKE process, pairing must be implemented between the HDCP Transmitter and HDCP Receiver in parallel with AKE. When AKE_No_Stored_km message is received from the transmitter, it is an indication to the receiver that the transmitter does not have k_m stored corresponding to the receiver. In this case, after computing H', the HDCP Receiver

- Computes 128-bit $k_t = \text{SHA-256}(\text{kpriv}_t)[127:0]$. |
Generates 128-bit $E_{kh}(k_m)$ by encrypting k_m with k_h using AES as illustrated in Figure 2.3.

- Asserts PAIRINGAVAILABLE and generates CP_IRQ when AKE_Send_Pairing_Info to the transmitter containing the 128-bit $E_{kh}(k_m)$ is available for the transmitter to read. This message must be available for the transmitter to read within 200ms from the time the transmitter begins reading the AKE_Send_H_Prime message parameters from the HDCP Receiver.

- The transmitter reads the PAIRINGAVAILABLE status bit in the RxStatus register as soon as it receives the CP_IRQ interrupt. If the PAIRINGAVAILABLE status bit is set, the transmitter reads the AKE_Send_Pairing_Info message.

On receiving AKE_Send_Pairing_Info message, the HDCP Transmitter may persistently store m (which is r_m concatenated with $r_m(r_x) | r_m$), k_m and $E_{kh}(k_m)$ along with Receiver ID.

If AKE_Send_Pairing_Info is not received by the HDCP Transmitter within 200ms of the reception of AKE_Send_H_prime, authentication fails and the authentication protocol is aborted.

Note: The HDCP Transmitter may store in its non-volatile storage m, k_m, and $E_{kh}(k_m)$ along with corresponding Receiver IDs of all HDCP Receivers with which pairing was implemented by the HDCP Transmitter.

Ref-1A-5.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 Locality Check Page 18</td>
<td>Locality check is performed after AKE and pairing. The HDCP Transmitter initiates locality check by sending a 64-bit pseudo-random nonce r_n to the downstream receiver.</td>
</tr>
<tr>
<td></td>
<td>- Initiates locality check by sending LC_Init message containing a 64-bit pseudo-random nonce r_n to the HDCP Receiver.</td>
</tr>
<tr>
<td></td>
<td>- Sets its watchdog timer to 7ms. Locality check fails if the watchdog timer expires before LC_Send_L_prime message is received. The HDCP transmitter must not attempt to read LC_Send_L_Prime sooner than 7ms after writing the AKE_Stored_Km_msg. If the LC_Send_L_prime msg is not available for the transmitter to read within 7ms, locality check fails and the transmitter aborts the authentication protocol.</td>
</tr>
<tr>
<td></td>
<td>- Computes $L = \text{HMAC-SHA256}(r_n, k_d \oplus r_x)$ where HMAC-SHA256 is computed over r_n, and the key used for HMAC is $k_d \oplus r_x$, where r_x is XORed with the least-significant 64-bits of k_d.</td>
</tr>
<tr>
<td></td>
<td>- On receiving LC_Send_L_prime message, compares L and L'. Locality check fails if L is not equal to L'.</td>
</tr>
</tbody>
</table>

State A2: Locality Check. In this state, the HDCP Transmitter implements the locality check as explained in Section 2.3 with the HDCP Receiver.
Ref-1A-6.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 Session Key Exchange Page 16</td>
<td>Successful completion of AKE and locality check stages affirms to HDCP Transmitter that the HDCP Receiver is authorized to receive HDCP Content. Session Key Exchange (SKE) is initiated by the HDCP Transmitter after a successful locality check. The HDCP Transmitter sends encrypted Session Key to the HDCP Receiver at least 200ms before enabling HDCP Encryption and beginning the transmission of HDCP Content. HDCP Encryption may be enabled 200ms after the transmission of the encrypted Session Key to the HDCP Receiver and at no time prior. Content encrypted with the Session Key k_s starts to flow between the HDCP Transmitter and HDCP Receiver. HDCP Encryption must be enabled only after successful completion of AKE, locality check and SKE stages. During SKE, the HDCP Transmitter</td>
</tr>
<tr>
<td></td>
<td>• Generates a pseudo-random 128-bit session key k_s and 64-bit pseudo-random number r_{in}.</td>
</tr>
<tr>
<td></td>
<td>• Performs key derivation as explained in Section 2.7 to generate 128-bit dkey$_2$ where dkey$_2$ is the derived key when $\text{ctr}=2$.</td>
</tr>
<tr>
<td></td>
<td>• Computes 128-bit $E_{dkey}(k_s) = k_s \ XOR (dkey_2 \ XOR r_{in})$, where r_{in} is XORed with the least-significant 64-bits of dkey$_2$.</td>
</tr>
<tr>
<td></td>
<td>• Sends SKE_Send_Eks message containing $E_{dkey}(k_s)$ and r_{in} to the HDCP Receiver.</td>
</tr>
<tr>
<td>State A3: Exchange k_s Page 29</td>
<td>State A3: Exchange k_s. The HDCP Transmitter sends encrypted Session Key, $E_{dkey}(k_s)$, and r_{in} to the HDCP Receiver as part of the SKE_Send_Eks message. It may enable HDCP Encryption 200ms after sending encrypted Session Key. HDCP Encryption must be enabled only after successful completion of AKE, locality check and SKE stages. If the attached HDCP receiver is not an HDCP repeater, the HDCP transmitter also writes the Type value corresponding to the content stream to be transmitted to the HDCP receiver at least 200ms before enabling HDCP Encryption. HDCP Encryption may be enabled 200ms after the transmission of the encrypted session key and Type value to the HDCP receiver and at no time prior. Type value is written only to HDCP receivers that are not HDCP repeaters.</td>
</tr>
</tbody>
</table>

Ref-1A-7.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Any State: H0. Page 27</td>
<td>Transition Any State: H0. Reset conditions at the HDCP Transmitter or disconnect of the connected HDCP capable receiver cause the HDCP Transmitter to enter the No Receiver Attached state.</td>
</tr>
</tbody>
</table>
Requirement

Transition H0:H1. The detection of a sink device (through Receiver Connected Indication) indicates to the transmitter that a sink device is connected and ready to display the received content. When the receiver is no longer active, the transmitter is notified through Receiver Disconnected Indication.

Ref-1A-8.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition A1:H1 Page 28</td>
<td>Transition A1:H1. This transition occurs on failure of signature verification on (\text{cert}_n), failure of SRM integrity check, if Receiver ID of the connected HDCP Device is in the revocation list or if there is a mismatch between (H) and (H'). This transition also occurs if AKE_Send_H_prime message is not received within one second after sending AKE_No_Stored_km or within 200ms after sending AKE_Stored_km to the receiver.</td>
</tr>
</tbody>
</table>

Ref-1A-9.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 Locality Check Page 16</td>
<td>In the case of a locality check failure due to expiration of the watchdog timer or due to mismatch of (L) and (L') (or the most significant 128-bits of (L) and (L')) at the HDCP Transmitter, locality check may be reattempted by the HDCP Transmitter for a maximum of 1023 additional attempts (for a maximum allowed 1024 total trials) with the transmission of an LC_Init message containing a new (r_n). Failure of locality check on the first attempt and subsequent zero or more reattempts results in an authentication failure and the authentication protocol is aborted.</td>
</tr>
</tbody>
</table>

| Transition A2: H1 Page 28 | **Transition A2:H1.** This transition occurs on one or more consecutive locality check failures. Locality check fails when \(L'\) (or the most significant 128-bits of \(L'\)) is not received within 7ms and the watchdog timer at the HDCP Transmitter expires or on a mismatch between \(L\) and \(L'\) (or the most significant 128-bits of \(L'\)). |

Ref-1A-10.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 Encryption Status Signaling in SST Mode Page 58</td>
<td>When encryption is enabled, BS and SR control symbols are replaced by CPBS and CPSR control symbols respectively. In the SST mode, detection of SR indicates that encryption is disabled and detection of CPSR indicates that encryption is enabled. Following the transmission or detection of CPSR, the HDCP Cipher is clocked as explained in Section 3.1 and the resulting key stream bits are used to encrypt the data symbols following the CPSR as explained in Section 3.2. The HDCP Cipher is not clocked when HDCP Encryption is disabled.</td>
</tr>
</tbody>
</table>
3.1 Data Encryption

When HDCP Encryption is applied to a timeslot in the MST mode or when HDCP Encryption is enabled in the SST mode, all data symbols (including video data, secondary data and dummy symbols) must be encrypted and K-codes must not be encrypted. Section 3.3 and 3.4 explains in detail the encryption signaling protocol that is used to enable/disable HDCP Encryption.

Ref-1A-11.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.2 Link Integrity Check in SST Mode Page 24</td>
<td>To Perform link integrity check in SST mode, Bit 5 of VB-ID is used to transmit a known 16-bit pattern, 0x531F, from the transmitter to the receiver one bit at a time. This pattern is referred to as LINK_VERIFICATION_PATTERN. The VB-ID is transmitted on all lanes after every BS/SR/CPBS/CPSR symbol, as described in Display-port specification. A link integrity failure is determined to have occurred if three consecutive pattern mismatches at the receiver (in 16*3=48 VB-ID transmissions) are detected within two successive frame periods.</td>
</tr>
<tr>
<td></td>
<td>On Detecting an unrecoverable loss of cipher synchronization the HDCP Receiver must assert the LINK_INTEGRITY_FAILURE bit in the RXStatus register and generate a CP_IRQ interrupt. On receiving a CP_IRQ interrupt, the HDCP transmitter must disable HDCP encryption at the CPSR/SR transmission boundary as soon as feasible after receiving the CP_IRQ interrupt from the HDCP Receiver if the LINK_INTEGRITY bit is set and must initiate re-authentication with the transmission of a new AKE_INIT message.</td>
</tr>
</tbody>
</table>

Ref-1B. Downstream procedure with Repeater

Ref-1B-1.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition A7:A8 Page 29</td>
<td>Transition A7:A8. This transition occurs on successful verification of the most significant 128-bits of V and V', none of the reported Receiver IDs are in the current revocation list, the HDCP Transmitter does not detect a roll-over of seq_num_V and the downstream topology does not exceed specified maximum.</td>
</tr>
<tr>
<td>Transition A8:A9 page 29</td>
<td>Transition A8:A9. This transition occurs after the RepeaterAuth_Send_Ack message has been written to the repeater.</td>
</tr>
</tbody>
</table>
Reference-1B-2.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5 Authentication with Repeaters Page 19-20</td>
<td>After transmitting the SKE_Send_Eks message, the HDCP Transmitter, having determined that REPEATER received earlier in the protocol is set, sets a three second watchdog timer and polls the HDCP Repeater’s READY status bit in Rxstatus register and wait for CP_IRQ interrupt. If READY is set, transmitter reads the RepeaterAuth_Send_ReceiverID_List message. If the asserted READY status and CP_IRQ is not received by the HDCP Transmitter within a maximum-permitted time of three seconds after transmitting SKE_Send_Eks message, authentication of the HDCP Repeater fails. With this failure, the HDCP Transmitter disables HDCP Encryption and aborts the authentication protocol with the HDCP Repeater. The HDCP Repeater makes available the most significant 128-bits of V' for the transmitter to read as part of the RepeaterAuth_Send_ReceiverID_List message. Whenever the HDCP Transmitter reads the RepeaterAuth_Send_ReceiverID_List message, it verifies the integrity of the Receiver ID list by computing V and comparing the most significant 128-bits of V and V'. If the values do not match, authentication fails, the authentication Protocol is aborted and HDCP Encryption is disabled. On successful verification of Receiver ID list and topology information, i.e. if the values match, none of the reported Receiver IDs are in the current revocation list (in the case of the most upstream HDCP Transmitter), the HDCP Transmitter does not detect a roll-over of seq_num_V, the downstream topology does not exceed specified maximums (explained below), the HDCP Transmitter (including downstream port of HDCP Repeater) writes the least significant 128-bits of V to the HDCP Repeater as part of the RepeaterAuth_Send_Ack message. Every RepeaterAuth_Send_ReceiverID_List message from the repeater to the transmitter must be followed by a RepeaterAuth_Send_Ack message from the transmitter to repeater on successful verification of Receiver ID list and topology information by the transmitter.</td>
</tr>
<tr>
<td>Transition A6:H1 page 29</td>
<td>Transition A6:H1 The watchdog timer expires before the READY has been asserted by the repeater followed by CP_IRQ.</td>
</tr>
</tbody>
</table>

Reference-1B-3.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 121 of 132</td>
<td></td>
</tr>
</tbody>
</table>
Section 2.5 Authentication with Repeaters Page 21

HDCP Repeaters must be capable of supporting DEVICE_COUNT values of up to 31 and DEPTH values of up to 4. If the computed DEVICE_COUNT for an HDCP Repeater exceeds 31, the error is referred to as MAX_DEVS_EXCEEDED error. The repeater sets MAX_DEVS_EXCEEDED bit to one in the RepeaterAuth_Send_ReceiverID_List message. If the computed DEPTH for an HDCP Repeater exceeds four, the error is referred to as MAX_CASCADE_EXCEEDED error. The repeater sets MAX_CASCADE_EXCEEDED bit to one in the RepeaterAuth_Send_ReceiverID_List message. When an HDCP Repeater receives a MAX_DEVS_EXCEEDED or a MAX_CASCADE_EXCEEDED error from a downstream HDCP Repeater, it must propagate the error to the Upstream HDCP Transmitter and assert the READY bit and assert the CP_IRQ interrupt.

If a transmitter receives these errors, it must not read the most significant 128-bits of V, Receiver ID list and seq_num_V from the HDCP Repeater since the HDCP Repeater will not include these fields in the RepeaterAuth_Send_ReceiverID_List message. Authentication fails if the Topology maximums are exceeded. HDCP Encryption is disabled and the Authentication protocol is aborted.

Transition A7:H1 Page 29

Transition A7:H1. This transition is made if a mismatch occurs between the most significant 128-bits of V and V'. This transition is also made if any of the Receiver IDs in the Receiver ID list are found in the current revocation list or if the HDCP Transmitter detects a roll-over of seq_num_V. A MAX_CASCADE_EXCEEDED or MAX_DEVS_EXCEEDED error also causes this transition.

Ref-1B-4.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5 Authentication with Repeaters Pg 24</td>
<td>After transmitting the SKE_Send_Eks message, the HDCP Transmitter, having determined that REPEATER received earlier in the protocol is set, sets a three second watchdog timer and polls the HDCP Repeater’s READY status bit and if it’s set, along with a non-zero Message_Size, reads the RepeaterAuth_Send_ReceiverID_List message. If the asserted READY status is not received by the HDCP Transmitter within a maximum-permitted time of three seconds after transmitting SKE_Send_Eks message, authentication of the</td>
</tr>
</tbody>
</table>
HDCP Repeater fails. With this failure, the HDCP Transmitter disables HDCP Encryption and aborts the authentication protocol with the HDCP Repeater. When READY is set and the CP_IRQ interrupt asserted, the HDCP Transmitter reads the RepeaterAuth_Send_ReceiverID_List message. The HDCP Repeater makes available the most significant 128-bits of V' for the transmitter to read as part of the RepeaterAuth_Send_ReceiverID_List message. Whenever the HDCP Transmitter reads the RepeaterAuth_Send_ReceiverID_List message, it verifies the integrity of the Receiver ID list by computing V and comparing the most significant 128-bits of V and V'. If the values do not match, authentication fails, the authentication protocol is aborted and HDCP Encryption is disabled.

On successful verification of Receiver ID list and topology information, i.e. if the values match, none of the reported Receiver IDs are in the current revocation list (in the case of the most upstream HDCP Transmitter), the HDCP Transmitter does not detect a roll-over of seq_num_V, the downstream topology does not exceed specified maximums (explained below), the HDCP Transmitter (including downstream port of HDCP Repeater) writes the least significant 128-bits of V to the HDCP Repeater as part of the RepeaterAuth_Send_Ack message. Every RepeaterAuth_Send_ReceiverID_List message from the repeater to the transmitter must be followed by a RepeaterAuth_Send_Ack message from the transmitter to repeater on successful verification of Receiver ID list and topology information by the transmitter.

Transition A7:A8
Reference Section 2.5.2 Downstream Propagation of Content Stream Management Information
Page 29

Transition A7:H1. This transition occurs on successful verification of the most significant 128-bits of V and V', none of the reported Receiver IDs are in the current revocation list, the HDCP Transmitter does not detect a roll-over of seq_num_V and the downstream topology does not exceed specified maximum.

Ref-1B-5.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5.2 Downstream Propagation of Content Stream Management Information Pg 22</td>
<td>The HDCP Transmitter propagates Content Stream management information, which includes Type value assigned to the Content Stream, using the RepeaterAuth_Stream_Manage message to the attached HDCP Repeater. The HDCP Transmitter executes this step after successful completion of Session Key</td>
</tr>
</tbody>
</table>
Exchange and before beginning the transmission of a Content Stream after HDCP Encryption to the HDCP Repeater. The RepeaterAuth_Stream_Manage message from an HDCP Transmitter to the attached HDCP Repeater identifies any restriction, as specified by the Upstream Content Control Function, on the transmission of the Content Stream to specific devices. A Type value is assigned to the Content Stream by the most upstream HDCP Transmitter based on instructions received from the Upstream Content Control Function. The exact mechanism used by the Upstream Content Control Function to instruct the HDCP Transmitter is outside the scope of this specification. Type 0 Content Stream (see Section 4.2.12) may be transmitted by the HDCP Repeater to all HDCP Devices. Type 1 Content Stream (see Section 4.2.12) must not be transmitted by the HDCP Repeater through its HDCP-protected Interface Ports connected to HDCP 1.x-compliant Devices and HDCP 2.0-compliant Repeaters.

The HDCP Transmitter must write the RepeaterAuth_Stream_Manage message specifying Type value assigned to the Content Stream, to the attached HDCP Repeater at least 100ms before the transmission of the corresponding Content Stream after HDCP Encryption. The HDCP Transmitter must only send the RepeaterAuth_Stream_Manage message corresponding to the encrypted Content Stream it will transmit to the HDCP Repeater. The HDCP Transmitter initializes seq_num_M to 0 at the beginning of the HDCP Session i.e. after AKE_Init is sent.

On receiving the RepeaterAuth_Stream_Manage message, the HDCP Repeater computes M' as given below. HMAC-SHA256 is computed over the concatenation of StreamID_Type (see Section 4.2.12) and seq_num_M values received as part of the RepeaterAuth_Stream_Manage message. All values are in big-endian order. The key used for HMAC is SHA256(kd).

| Section 2.5.2 Downstream Propagation of Content Stream | The RepeaterAuth_Stream_Ready message must be available for the transmitter to read within 100ms from the time the transmitter finishes writing the RepeaterAuth_Stream_Manage message parameters to the HDCP |
| Management Information Page 23 | Receiver. Every RepeaterAuth_Stream_Manage message from the transmitter to the repeater must be followed by a RepeaterAuth_Stream_Ready message from the repeater to the transmitter. When the RepeaterAuth_Stream_Ready message is read, the HDCP Transmitter verifies the integrity of the message by computing M and comparing this value to M'. If M is equal to M', the HDCP Transmitter may transmit the Content Stream identified in the corresponding RepeaterAuth_Stream_Manage message. If the RepeaterAuth_Stream_Ready message is not available for the transmitter to read within 100 ms or if M is not equal to M', the HDCP Transmitter must not transmit the Content Stream identified in the corresponding RepeaterAuth_Stream_Manage message. An HDCP Repeater connected to an HDCP 1.x-compliant Transmitter will not receive the RepeaterAuth_Stream_Manage message from the transmitter. In this case, the HDCP Repeater must assign a Type value of 0x00 to all Content Streams received from the HDCP Transmitter. The HDCP Repeater must in turn propagate the received Content Stream management information using the RepeaterAuth_Stream_Manage message further downstream. |
Ref-2. Receiver

Ref-2C. Upstream procedure with Transmitter

Ref-2C-1.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Any State:H0</td>
<td>Transition Any State:H0. Reset conditions at the HDCP Transmitter or disconnect of the connected HDCP capable receiver cause the HDCP Transmitter to enter the No Receiver Attached state.</td>
</tr>
<tr>
<td>Transition H0:H1</td>
<td>Transition H0:H1. The detection of a sink device (through Receiver Connected Indication) indicates to the transmitter that a sink device is connected and ready to display the received content. When the receiver is no longer active, the transmitter is notified through Receiver Disconnected Indication.</td>
</tr>
</tbody>
</table>

Ref-2C-2.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>State B1: Compute k_m</td>
<td>State B1: Compute k_m. In this state, the HDCP Receiver makes AKE_Send_Cert message available for reading by the transmitter in response to AKE_Init. If AKE_No_Stored_km is received, it decrypts km with kprivrx, calculates H'. It sends AKE_Send_H_prime message immediately after computation of H' to ensure that the message is received by the transmitter within the specified one second timeout at the transmitter. If AKE_Stored_km is received, the HDCP Receiver decrypts $Ekh(km)$ to derive km and calculates H'. It makes AKE_Send_H_prime message available for reading immediately after computation of H' to ensure that the message is received by the transmitter within the specified 200ms timeout at the transmitter. If AKE_No_Stored_km is received, this is an indication to the HDCP Receiver that the HDCP Transmitter does not contain a km stored corresponding to its Receiver ID. It implements pairing with the HDCP Transmitter as explained in Section 2.2.1.</td>
</tr>
<tr>
<td>Transition H0:H1</td>
<td>Transition H0:H1. The detection of a sink device (through Receiver Connected Indication) indicates to the transmitter that a sink device is connected and ready to display the received content. When the receiver is no longer active, the transmitter is notified through Receiver Disconnected Indication.</td>
</tr>
</tbody>
</table>

Ref-2C-3.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.2 Authentication and Key Exchange</td>
<td>Reads AKE_Send_Cert from the receiver containing certrx, a 64-bit pseudo-random value (rrx) and RxCaps. REPEATER bit in RxCaps indicates whether the connected receiver is an HDCP Repeater. If REPEATER is set to one, it</td>
</tr>
</tbody>
</table>
indicates the receiver is an HDCP Repeater. If REPEATER is zero, the receiver is not an HDCP Repeater.

| Section 4.2.2 AKE_Send_Cert (Read) Page 50 and 62 | The HDCP Receiver sets REPEATER to ‘true’ if it is an HDCP Repeater and ‘false’ if it is an HDCP Receiver that is not an HDCP Repeater. When REPEATER = ‘true’, the HDCP Receiver supports downstream connections as permitted by the Digital Content Protection LLC license. This bit does not change while the HDCP receiver is active. |

Ref-2C-4.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>State A2: Locality Check Page 28</td>
<td>State A2: Locality Check. In this state, the HDCP Transmitter implements the locality check as explained in Section 2.3 with the HDCP Receiver.</td>
</tr>
<tr>
<td>Transition A2:H1 Page 28</td>
<td>Transition A2:H1. This transition occurs on one or more consecutive locality check failures. Locality check fails when the last byte of the LC_Send_L_prime message is not received by the transmitter within 20ms and the watchdog timer at the HDCP Transmitter expires or on a mismatch between L and L’.</td>
</tr>
</tbody>
</table>
Ref-3. Repeater

Ref-3C. Upstream procedure with Transmitter

Ref-3C-1.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5 Authenticating with Repeaters Page 20</td>
<td>HDCP Repeaters must be capable of supporting DEVICE_COUNT values of up to 31 and DEPTH values of up to 4. If the computed DEVICE_COUNT for an HDCP Repeater exceeds 31, the error is referred to as MAX_DEVS_EXCEEDED error. The repeater sets MAX_DEVS_EXCEEDED bit to one in the RepeaterAuth_Send_ReceiverID_List message. If the computed DEPTH for an HDCP Repeater exceeds four, the error is referred to as MAX_CASCADE_EXCEEDED error. The repeater sets MAX_CASCADE_EXCEEDED bit to one in the RepeaterAuth_Send_ReceiverID_List message. When an HDCP Repeater receives a MAX_DEVS_EXCEEDED or a MAX_CASCADE_EXCEEDED error from a downstream HDCP Repeater, it must propagate the error to the upstream HDCP Transmitter and assert the READY bit and assert the CP_IRQ interrupt. If a transmitter receives these errors, it must not read the most significant 128-bits of V’, Receiver ID list and seq_num_V from the HDCP Repeater since the HDCP Repeater will not include these fields in the RepeaterAuth_Send_ReceiverID_List message.</td>
</tr>
</tbody>
</table>

Ref-3C-2.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5 Authenticating with Repeaters Page 19</td>
<td>The HDCP Repeater propagates topology information upward through the connection tree to the HDCP Transmitter. An HDCP Repeater reports the topology status variables DEVICE_COUNT, and DEPTH. The DEVICE_COUNT for an HDCP Repeater is equal to the total number of connected downstream HDCP Receiver and HDCP Repeaters. The value is calculated as the sum of the number of directly connected downstream HDCP Receiver and HDCP Repeaters plus the sum of the DEVICE_COUNT received from all connected HDCP Repeaters. The DEPTH status for an HDCP Repeater is equal to the maximum number of connection levels below any of the downstream HDCP-protected Interface Ports. The value is calculated as the maximum DEPTH reported from downstream HDCP Repeaters plus one (accounting for the connected HDCP Repeater).</td>
</tr>
</tbody>
</table>

Ref-3C-3.
### Reference	Requirement
Section 2.5.1 Topology Information Propagation Due to Topology Changes Page 19
When an HDCP Receiver (including HDCP Repeater) is newly connected to the HDCP Repeater or when a connected, active HDCP Receiver with which the HDCP Repeater has successfully completed the authentication protocol is disconnected from the HDCP Repeater, the HDCP Repeater asserts the READY status bit and the CP_IRQ interrupt and must make the RepeaterAuth_Send_ReceiverID_List message available for the upstream HDCP Transmitter to read. The RepeaterAuth_Send_ReceiverID_List message must include the Receiver IDs of all connected and active downstream HDCP Receivers with which the HDCP Repeater has successfully completed the authentication protocol. This enables upstream propagation of the most recent topology information after changes to the topology without interrupting the transmission of HDCP Content.

Section 2.5.1 Upstream Propagation of Topology Information Page 17
This stage is implemented after successful completion of Session Key Exchange. This stage is used to assemble the latest topology information at the beginning of the HDCP Session immediately following an SKE or on subsequent changes to the topology due to connect or disconnect of an HDCP Receiver or HDCP Repeater.

Ref-3C-4.

### Reference	Requirement
Section 2.10 HDCP Repeater State Diagrams Page 32
When the upstream HDCP-protected interface port of the HDCP Repeater is in an unauthenticated state, it signals the detection of an active downstream HDCP Receiver to the upstream HDCP Transmitter in one of the following ways.

The HDCP Repeater must generate the CONNECTION_STATUS_NOTIFY message to indicate plug of an active HDCP Receiver when the most upstream HDCP transmitter is capable of operating in the MST mode. It must pulse IRQ_HPD when the most upstream HDCP Transmitter is capable of operating only in the SST mode(SST-capable only) and has enabled IRQ_HPD are collectively referred to as Receiver connected Indication in this specification.

Hot Unplug is referred to as Receiver Disconnected Indication in this specification.

Whenever authentication is initiated by the upstream HDCP Transmitter by sending AKE_Init, the HDCP Repeater immediately initiates authentication on all its downstream HDCP-protected interface ports if its downstream ports are in an unauthenticated state.

The HDCP Repeater may cache the latest Receiver ID list and topology information received from its downstream ports. Whenever authentication is attempted by the upstream transmitter by sending AKE_Init, the HDCP
Repeater may propagate the cached Receiver ID list upstream without initiating a re-authentication on all its downstream ports.

State C0: Unauthenticated. Page 39
State C0: Unauthenticated. The device is idle, awaiting the reception of AKE_Init from the HDCP Transmitter to trigger the authentication protocol. If a transition in to this state occurred from State C5, when State C5 is implemented in parallel with State C8, or from State C6, the HDCP Repeater must set the REAUTH_REQ status bit in the RxStatus register and assert CP_IRQ interrupt.

Section 2.10 HDCP Repeater State diagrams Page 33
If an HDCP Repeater has no active downstream HDCP Devices, it must authenticate as an HDCP Receiver with REPEATER bit set to zero if it wishes to receive HDCP Content, but must not pass HDCP Content to downstream devices. When the upstream HDCP-protected Interface Port of the HDCP Repeater transition in to an unauthenticated state from an authenticated state (See Transition C5:C0 and Transition C6:C0 in Section 2.10.3), the HDCP Repeater must set the REAUTH_REQ status bit in the RxStatus register and assert CP_IRQ interrupt. If the upstream HDCP Transmitter receives a CP_IRQ interrupt with REAUTH_REQ status bit set, it may initiate re-authentication with the HDCP Repeater with the transmission of a new AKE_Init message.

Ref-3C-5.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5.1 Upstream Propagation of Topology Information Page 18</td>
<td>HDCP Repeaters assemble the list of all connected downstream HDCP Receivers as the downstream HDCP-protected Interface Ports of the HDCP Repeater successfully complete the authentication protocol with connected HDCP Receivers. The list is represented by a contiguous set of bytes, with each Receiver ID occupying five bytes stored in big-endian order. The total length of the Receiver ID list is five bytes times the total number of connected and active downstream HDCP Devices, including downstream HDCP Repeaters, with which the HDCP Repeater has successfully completed the authentication protocol. This total number is represented in the RepeaterAuth_Send_ReceiverID_List message by the DEVICE_COUNT value. An HDCP-protected Interface Port with no active device connected adds nothing to the list. Also, the Receiver ID of the HDCP Repeater itself at any level is not included in its own Receiver ID list. An HDCP-protected Interface Port connected to an HDCP Receiver that is not an HDCP Repeater adds the Receiver ID of the connected HDCP Receiver to the list. HDCP-protected Interface Ports that have an HDCP Repeater connected add the Receiver ID list received from the connected downstream HDCP Repeater plus the Receiver ID of the connected HDCP Repeater itself.</td>
</tr>
<tr>
<td>Transition F1:P1 Page 36</td>
<td>Transition F1:P1. This transition occurs on failure of signature verification on cert. or if there is a mismatch between H and H'. This transition also occurs if AKE_Send_H_prime message is not received one second after sending</td>
</tr>
</tbody>
</table>
AKE_No_Stored_km or within 200ms after sending AKE_Stored_km to the receiver.

Transition F2:P1

Page 36

This transition occurs on one or more consecutive locality check failures. Locality check fails when \(L'\) (or the most significant 128-bits of \(L'\)) is not received within 7ms and the watchdog timer at the downstream side expires or on a mismatch between \(L\) and \(L'\) (or the most significant 128-bits of \(L'\)).

Transition F6:P1

Page 37

This transition is made if a mismatch occurs between the most significant 128-bits of \(V\) and \(V'\). This transition is also made if the downstream side detects a roll-over of seq_num_V. A MAX_CASCADE_EXCEEDED or MAX_DEVS_EXCEEDED error also causes this transition.

Transition F7:P1

Page 37

The watchdog timer expires before READY has been asserted by the repeater.

Reference

Requirement

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.10 HDCP Repeater State Diagrams Page 33</td>
<td>If an HDCP Repeater has no active downstream HDCP Devices, it must authenticate as an HDCP Receiver with REPEATER bit set to zero if it wishes to receive HDCP Content, but must not pass HDCP Content to downstream devices</td>
</tr>
</tbody>
</table>

Reference

Requirement

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5.1 Upstream Propagation of Topology Information Page 19</td>
<td>The HDCP Repeater initializes seq_num_V to 0 at the beginning of the HDCP Session i.e. after AKE_Init is received. It is incremented by one after the transmission of every RepeaterAuth_Send_ReceiverID_List message. seq_num_V must never be reused during an HDCP Session for the computation of (V) (or (V')). If seq_num_V rolls over, the HDCP Transmitter must detect the roll-over in the RepeaterAuth_Send_ReceiverID_List read from the HDCP Repeater and the transmitter must disable HDCP Encryption if encryption is enabled, restart authentication by the transmission of a new AKE_Init message</td>
</tr>
</tbody>
</table>

Reference

Requirement

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>State C5: Assemble Receiver ID List Page 40</td>
<td>If any downstream port connected to an HDCP Repeater detects the HDCP2_0_REPEATER_DOWNSTREAM or HDCP1DEVICE_DOWNSTREAM bits read from the repeater to be set to one, the upstream side sets the corresponding bits to one in the RxInfo field which is read by the upstream HDCP Transmitter as part of the RepeaterAuth_Send_ReceiverID_List</td>
</tr>
</tbody>
</table>