HDCP Revision 2.3 on HDMI

Compliance Test Specification

Revision 1.0

20 October 2018
Notice

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel Corporation disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this specification. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein. The cryptographic functions described in this specification may be subject to export control by the United States, Japanese, and/or other governments.

Copyright ©2018 Intel Corporation. Third-party brands and names are the property of their respective owners.

Acknowledgement

Silicon Image Inc. contributed to the development of this specification.

Intellectual Property

Implementation of this guideline requires a license from the Digital Content Protection, LLC.

Contact Information

Digital Content Protection, LLC
C/O VTM Group
3855 SW 153rd Dr.
Beaverton, OR 97006

Email: info@digital-cp.com
Web: www.digital-cp.com

Revision History
Table of Contents

INTRODUCTION 6

DEFINITIONS 7

HDCP HIGH-DEFINITION MULTIMEDIA INTERFACE (HDMI) COMPLIANCE TEST SPECIFICATION 9

1. TRANSMITTER TEST 9

1A. Downstream procedure with Receiver 10
 1A-01. Regular Procedure – With previously connected Receiver (With stored km) 10
 1A-02. Regular Procedure – With newly connected Receiver (Without stored km) 13
 1A-03. Regular Procedure – Receiver disconnect after AKE_Init 14
 1A-04. Regular Procedure – Receiver disconnect after km 16
 1A-05. Regular Procedure – Receiver disconnect after locality check 18
 1A-06. Regular Procedure – Receiver disconnect after ks 20
 1A-07. Regular Procedure – Receiver sends REAUTH_REQ after ks 22
 1A-08. Irregular Procedure – Rx certificate not received 23
 1A-09. Irregular Procedure – Verify Receiver Certificate 24
 1A-10. Irregular Procedure – SRM 25
 1A-11. Irregular Procedure – Invalid H’ 26
 1A-12. Irregular Procedure – Pairing Failure 29
 1A-13. Irregular Procedure – Locality Failure 31

1B. Downstream procedure with Repeater 33
 1B-01. Regular Procedure – With Repeater 34
 1B-02. Irregular Procedure – Timeout of Receiver ID list 37
 1B-03. Irregular Procedure – Verify V’ 39
 1B-04. Irregular Procedure – MAX_DEVS EXCEEDED 41
 1B-05. Irregular Procedure – MAX_CASCADE EXCEEDED 43
 1B-06. Irregular Procedure – Incorrect seq_num_V 45
 1B-07. Regular Procedure – Re-authentication on HDCP_HPD 47
 1B-08. Regular Procedure – Re-authentication on REAUTH_REQ 49
 1B-09. Irregular Procedure – Rollover of seq_num_V 50
 1B-10. Irregular Procedure – Failure of Content Stream Management 52
2. **RECEIVER TESTS**

2C. **Upstream procedure with Transmitter**

2C-01. Regular Procedure – With transmitter

2C-02. Irregular Procedure – New Authentication after AKE_Init

2C-03. Irregular Procedure – New Authentication during Locality Check

2C-04. Irregular Procedure – New Authentication after SKE_Send_Eks

2C-05. Irregular Procedure – New Authentication during Link Synchronization

3. **REPEATER TESTS**

3A. **Downstream Procedure with Receiver**

3A-01. Regular Procedure – With previously connected Receiver (With stored km)

3A-02. Regular Procedure – With newly connected Receiver (Without stored km)

3A-03. Irregular Procedure – Rx certificate not received

3A-05. Irregular Procedure – Invalid H’

3A-06. Irregular Procedure – Pairing Failure

3A-07. Irregular Procedure – Locality Failure

3B. **Downstream Procedure with Repeater**

3B-01. Regular Procedure – With Repeater

3B-02. Irregular Procedure – Timeout of Receiver ID list

3B-03. Irregular Procedure – Verify V’

3B-04. Irregular Procedure – MAX_DEVS_EXCEEDED

3B-05. Irregular Procedure – MAX_CASCADE_EXCEEDED

3B-06. Irregular Procedure – Rollover of seq_num_V

3B-07. Irregular Procedure – Failure of Content Stream Management

3C. **Upstream Procedure with Transmitter**

☐ Repeater (DUT) Connected to Transmitter (TE pseudo-Source) and Receiver (TE pseudo-Sink)

3C-01. Regular Procedure – Transmitter – DUT – Receiver

3C-02. Regular Procedure – ReceiverID_List Propagation when an Active Receiver is Disconnected Downstream

3C-03. Regular Procedure – ReceiverID_List Propagation when an Active Receiver is Connected Downstream

3C-04. Irregular Procedure – New Authentication after AKE_Init

3C-05. Irregular Procedure – New Authentication during Locality Check

3C-06. Irregular Procedure – New Authentication after SKE_Send_Eks

3C-07. Irregular Procedure – New Authentication during Link Synchronization

3C-08. Irregular Procedure – Rx Certificate invalid

3C-09. Irregular Procedure – Invalid H’
3C-10. Irregular Procedure – Locality Failure

☐ Repeater (DUT) Connected to Transmitter (TE pseudo-Source) and Repeater (TE pseudo-Repeater) 95

3C-11. Regular Procedure – Transmitter – DUT – Repeater (With stored km) 98
3C-12. Regular Procedure – Receiver disconnect after AKE_Init 100
3C-13. Regular Procedure – Receiver disconnect after km 103
3C-14. Regular Procedure – Receiver disconnect after locality check 105
3C-15. Regular Procedure – Receiver disconnect after ks 107
3C-16. Irregular Procedure – Timeout of Receiver ID list 109
3C-17. Irregular Procedure – Verify V’ 111
3C-18. Irregular Procedure – DEVICE_COUNT 112
3C-19. Irregular Procedure – DEPTH 114
3C-20. Irregular Procedure – MAX_DEVS_EXCEEDED 116
3C-21. Irregular Procedure – MAXCASCADE_EXCEEDED 117
3C-22. Regular Procedure – Repeater with zero downstream device 118
3C-23. Regular Procedure – Propagation of HDCP_2_0_REPEATER_DOWNSTREAM flag 119
3C-24. Regular Procedure – Propagation of HDCP1_DEVICE_DOWNSTREAM flag 120
3C-25. Regular Procedure – Content Stream Management 121

4. REFERENCE 123
Introduction

Purpose and Scope

This document specifies test procedures that will be used to test devices for compliance with the HDCP on HDMI Specification Revision 2.3.

Tests are specified for HDCP Source, HDCP Sink, and HDCP Repeater devices.

Normative References

Digital Content Protection, LLC, “High-bandwidth Digital Content Protection System – Mapping HDCP to HDMI”, Revision 2.3, February 28, 2018
Definitions

Acronyms and Abbreviations

CDF Capabilities Declaration Form. This is a questionnaire that the supplier of the DUT fills out prior to the testing phase. It provides additional information about the device, its modes, and its intended operation. The CDF will be maintained on the DCP Website (www.digital-cp.com/compliance).

DUT Device Under Test

PCP Product Capability Parameter

TE Test Equipment

TRF Test Results Form

Glossary of Terms

WARNING DUT’s operation did not meet expectations, but because this test only tests for compliance with recommendations, it cannot be treated as a failure.

PASS No error(s) were detected in the DUT’s operation, although the DUT may have WARNING item(s).

FAIL Error(s) were detected in the DUT’s operation.

Product Capability Parameter (PCP)

The PCP provides information about the behavior of the product under certain conditions and is requested from HDCP Adopters who wish to have their products tested. Information contained in the PCP is necessary to ensure accurate test reports.

Source Capability

Source_MultipleOutputs Does the DUT support transmission of HDCP-protected content to more than one downstream device at the same time? (Y/N)

Source_AuthCount Number of times the DUT attempts authentication before it Transitions into the authenticated state. The
Source_Auth_Count number of authentications is verified (1, 2 ... or X)

Source_Internal_Repeater

Does the DUT have an internal repeater that requires the DEPTH and DEVICE_COUNT to be changed on the Pseudo Repeater of the TE? (Y/N) DEPTH = 3 DEVICE_COUNT = 30

Repeater Capability

Repeater_MultipleOutputs

Does the DUT support transmission of HDCP-protected content to more than one downstream device at the same time? (Y/N)
HDCP High-Definition Multimedia Interface (HDMI) Compliance Test Specification

The HDCP High-Definition Multimedia Interface Compliance Test Specification uses Pseudo-sinks, Pseudo-repeaters and Pseudo-source TEs to test corresponding source, sink and repeater DUTs. The TEs simulate the behavior of sources, sinks and repeaters and can be configured to test the behavior of the DUTs under normal and error conditions.

1. Transmitter Test

Transmitter’s (Source DUTs) are tested for compliance with the specification by connecting them to Receivers (TE pseudo-Sink) and Repeaters (TE pseudo-Repeater).

 Note: The source is required to play protected content thus requiring HDCP to be enabled. The Content Stream to be played does not have any output restrictions (Type = 0).

 Note: For all authentication failures (except a failure of SRM integrity or Receiver ID in revocation list), the Tx must re-attempt authentication at least once (Ref-1A-1).

1A. Downstream procedure with Receiver

In these tests, an HDCP Receiver (TE pseudo-Sink) is connected to the Transmitter (DUT).
1A-01. Regular Procedure – With previously connected Receiver (With stored k_m)

Test Objective

Verify the Transmitter’s implementation of the HDCP protocol when an HDCP Receiver (that was previously connected) is attached.

Required Test Method

<Connection Setup>

☐ Connect TE (pseudo-Sink) to the downstream HDCP-protected Interface Port of DUT

![Diagram of connection setup]

Note: Upon initial connection, TE should authenticate and complete pairing with the DUT before proceeding

<Configuration of TE>

<table>
<thead>
<tr>
<th>Message: Authentication and Key Exchange</th>
<th>Parameter:</th>
<th>Value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKE_Send_Cert</td>
<td>RxCaps:REPEATER</td>
<td>FALSE</td>
</tr>
<tr>
<td></td>
<td>RxCaps:VERSION</td>
<td>0x02</td>
</tr>
<tr>
<td></td>
<td>r_{rx}</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>$c_{ert_{rx}}$</td>
<td>Valid</td>
</tr>
<tr>
<td>AKE_Send_H_prime</td>
<td>H'</td>
<td>Valid (within 200 ms timeout)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message: Pairing</th>
<th>Parameter:</th>
<th>Value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKE_Send_Pairing_Info</td>
<td>$E_{kh_{km}}$</td>
<td>Valid (used only for first time)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message: Locality Check</th>
<th>Parameter:</th>
<th>Value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC_Send_L_prime</td>
<td>L'</td>
<td>Valid (within 20 ms timeout)</td>
</tr>
</tbody>
</table>

<Test Case>

[Before Starting Authentication]

(STEP 1A-01-1)

☐ TE asserts HDCP_HPD
☐ DUT should read HDCP2Version register

- If DUT does not read HDCP2Version register, then FAIL (Ref-1A-1)

☐ DUT may begin transmitting unencrypted signal with HDCP Encryption disabled

- If DUT begins the Authentication and Key Exchange without sending unencrypted video signal, then WARNING (Ref-1A-2)

- If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

[Authentication and Key Exchange]

(STEP 1A-01-2)

☐ DUT initiates authentication by transmitting AKE_Init

- If DUT does not transmit AKE_Init within 10 seconds of TE asserting HDCP_HPD, then FAIL (Ref-1A-3)

- If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

(STEP 1A-01-3)

☐ TE sends AKE_Send_Cert message

NOTE: TE (Sink) sends message to Source by setting the message size in RxStatus (0x70) of HDCP port. Source polls the RxStatus and if message size is not 0, it reads out the message from Read_Message (0x80) of HDCP port

☐ DUT sends AKE_Stored_km or AKE_No_Stored_km message

- If DUT sends AKE_No_Stored_km message
 - NOTE ("DUT does not appear to implement persistent pairing for faster authentication")
 - TE computes H' and sends AKE_Send_H_prime message within 1 sec
 - TE generates $E_{kh}(k_m)$ and sends AKE_Send_Pairing_Info message within 200 ms

- If DUT sends AKE_Stored_km message
 - TE computes H' and sends AKE_Send_H_prime message within 200 ms timeout at the transmitter
If DUT does not send AKE_Stored_km or AKE_No_Stored_km message within 5 seconds, then FAIL (Ref-1A-4)

[Locality Check]

(STEP 1A-01-4)

- DUT sends LC_Init message
 - If DUT does not send LC_Init message within 5 seconds, then FAIL (Ref-1A-5)

- TE computes L’ and sends LC_Send_L_prime message within the 20 ms timeout at the transmitter

(STEP 1A-01-5)

- DUT sends SKE_Send_Eks message
 - If DUT does not send SKE_Send_Eks message within 5 seconds, then FAIL (Ref-1A-6)

(STEP 1A-01-6)

- DUT enables HDCP encryption 200 ms after transmission of SKE_Send_Eks message
 - If DUT enables HDCP encryption in less than 200 ms, then FAIL (Ref-1A-6)
 - If DUT does not enable HDCP encryption between 200 ms and 10 s, then FAIL (Ref-1A-6)
 - After HDCP_HPD is sent DUT may continue on with authentication/enable encryption, however if DUT does not restart authentication within 10 seconds of HDCP_HPD assert then FAIL (Ref-1A-7)
 - If DUT transmits Data Island, Video Data, or Guard Band data during the keep-out period starting 508 TMDS character clocks past the active edge of VSYNC and ends 650 TMDS character clocks past the active edge of VSYNC, then FAIL (Ref-1A-10)

- If DUT successfully completes the authentication process, then PASS.
1A-02. Regular Procedure – With newly connected Receiver (Without stored k_m)

Test Objective

Verify the Transmitter’s implementation of the HDCP protocol when an HDCP Receiver (not previously connected) is attached.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m) except for following change:

- TE utilizes Receiver ID not paired to DUT

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ is performed.

- TE sends AKE_Send_Cert message

(STEP 1A-02-1)

- DUT transmits AKE_No_Stored_km message
 - If DUT does not transmit AKE_No_Stored_km message within 5 seconds, then FAIL (Ref-1A-3)
 - If DUT sends AKE_Stored_km message, then FAIL (Ref-1A-3)
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
- If DUT sends AKE_No_Stored_km message, then PASS

Note: TE does not complete pairing.
1A-03. Regular Procedure – Receiver disconnect after AKE_Init

Test Objective

Verify the Source DUT restarts authentication after the receiver is disconnected and reconnected following the write of AKE_Init with a new \(r_{tx} \) value.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’ is performed.

- TE de-asserts HDCP_HPD after AKE_Init message
- TE asserts HDCP_HPD
 - NOTE: The length of this HPD should be 100ms. Any proceeding HPD occurring mid test should remain at 100ms.

(STEP 1A-03-1)

- DUT restarts Authentication and Key Exchange
 - If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’, then FAIL (Ref-1A-7)
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
➢ After HDCP_HPD is sent DUT may continue on with authentication/enable encryption, however if DUT does not restart authentication within 10 seconds of HDCP_HPD assert then FAIL (Ref-1A-7)

☐ If DUT re-starts Authentication and Key Exchange on detecting asserted HDCP_HPD and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS
1A-04. Regular Procedure – Receiver disconnect after k_m

Test Objective

Verify the Source DUT restarts authentication after the receiver is disconnected and reconnected following the exchange of k_m.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) and (STEP 1A-01-3) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

- TE de-asserts HDCP_HPD after AKE_Stored_km or AKE_No_Stored_km message
- TE asserts HDCP_HPD

(STEP 1A-04-1)

- DUT restarts Authentication and Key Exchange

 - If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then FAIL (Ref-1A-7)

 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

 - After HDCP_HPD is sent DUT may continue on with authentication/enable encryption, however if DUT does not restart authentication within 10 seconds of HDCP_HPD assert then FAIL (Ref-1A-7)
If DUT re-starts Authentication and Key Exchange on detecting asserted HDCP_HPD and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS

After HDCP_HPD is sent DUT may continue on with authentication/enable encryption, however if DUT does not restart authentication within 10 seconds of HDCP_HPD assert then FAIL (Ref-1A-7)
1A-05. **Regular Procedure – Receiver disconnect after locality check**

Test Objective

Verify the Source DUT restarts authentication after the receiver is disconnected and reconnected after locality check is initiated.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored km)’

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored km)’

<Test Case>

The steps described under [Before Starting Authentication] and [Authentication and Key Exchange] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

[Locality Check]

(STEP 1A-01-4) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ is performed.

- TE de-asserts HDCP_HPD after LC_Init message
- TE asserts HDCP_HPD

STEP 1A-05-1

- DUT restarts Authentication and Key Exchange

- If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then FAIL (Ref-1A-7)

- If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

- After HDCP_HPD is sent DUT may continue on with authentication/enable encryption, however if DUT does not restart authentication within 10 seconds of HDCP_HPD assert then FAIL (Ref-1A-7)
If DUT re-starts Authentication and Key Exchange on detecting asserted HDCP_HPD and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS
1A-06. Regular Procedure – Receiver disconnect after k_s

Test Case

Verify the Source DUT restarts authentication after the receiver is disconnected and reconnected following the exchange of k_s.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Test Case>

The steps described under [Before Starting Authentication] through [Locality Check] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Session Key Exchange]

(STEP 1A-01-5) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ is performed.

☐ TE de-asserts HDCP_HPD after SKE_Send_Eks message

☐ TE asserts HDCP_HPD

(STEP 1A-06-1)

☐ DUT restarts Authentication and Key Exchange

- If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then FAIL (Ref-1A-7)

- If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

- After HDCP_HPD is sent DUT may continue on with authentication/enable encryption, however if DUT does not restart authentication within 10 seconds of HDCP_HPD assert then FAIL (Ref-1A-7)
If DUT re-starts Authentication and Key Exchange on detecting asserted HDCP_HPD and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS
1A-07. Regular Procedure – Receiver sends REAUTH_REQ after ks

Test Case

Verify the Source DUT restarts authentication after the receiver sends REAUTH_REQ following the exchange of ks.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored km)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored km)

<Test Case>

The steps described under [Before Starting Authentication] through [Locality Check] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

[Session Key Exchange]

(STEP 1A-01-5) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ is performed.

☐ TE sends REAUTH_REQ by setting REAUTH_REQ bit of RxStatus after SKE_Send_Eks message

(STEP 1A-07-1)

☐ DUT restarts Authentication and Key Exchange

➤ If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then FAIL (Ref-1A-7)

➤ After REAUTH_REQ is sent DUT may continue on with authentication/enable encryption, however if DUT does not restart authentication within 10 seconds of REAUTH_REQ then FAIL (Ref-1A-7)

☐ If DUT re-starts Authentication and Key Exchange on detecting REAUTH_REQ and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS
1A-08. Irregular Procedure – Rx certificate not received

Test Objective

Verify the Source DUT considers it a failure of authentication when the certificate is not received from the Rx during AKE.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’ are performed.

[Authentication and Key Exchange]

(STEP 1A-08-1)

☐ TE does not respond with AKE_Send_Cert
 ➢ If DUT transmits AKE_No_Stored_km, then FAIL (Ref-1A-3)
 ➢ If DUT transmits AKE_Stored_km, then FAIL (Ref-1A-3)
 ➢ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’, then PASS
 ➢ If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) within 2 seconds of AKE_Init, then FAIL (Ref-1A-1)
1A-09. Irregular Procedure – Verify Receiver Certificate

Test Objective

Verify the Source DUT considers it a failure of authentication when verification of Receiver certificate fails.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m) except for following change:

- TE provides invalid value for cert_rx

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ is performed.

(STEP 1A-09-1)

- TE provides invalid cert_rx as part of AKE_Send_Cert

 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

 - If DUT transmits AKE_No_Stored_km or AKE_Stored_km, then FAIL (Ref-1A-8)

- If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS

 - If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) within 2 seconds of receipt of invalid cert”x, then FAIL (Ref-1A-1)
1A-10. Irregular Procedure – SRM

Test Objective

Verify the Source DUT considers it a failure of authentication when the *Receiver ID* is on the revocation list.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ is performed.

(STEP 1A-10-1)

- TE provides revoked *Receiver ID* as part of AKE_Send_Cert

- If DUT aborts Authentication and Key Exchange and stops HDCP within 2 seconds of receipt of revoked *Receiver ID*, then PASS. Otherwise, FAIL (Ref-1A-2) (Ref-1A-8)

 Note: DUT may alternatively re-start Authentication and Key Exchange and perform (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, by transmitting a new r_x as part of AKE_Init.
1A-11. Irregular Procedure – Invalid H’

Test Objective

Verify the Source DUT considers it a failure of authentication if the Receiver provides a value for H’ that does not match H, or does not respond with H’ in the allotted time.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored k_m)

- Exception in Test Case 3 – TE utilizes unpaired Receiver ID.

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ is performed.

Three test cases; all are performed

[Test Case 1 – Invalid H’]

(STEP 1A-11-1)

☐ TE sends AKE_Send_Cert message (with previously paired Receiver ID)

☐ DUT sends AKE_Stored_km or AKE_No_Stored_km message

➤ If DUT does not send AKE_Stored_km or AKE_No_Stored_km message, then FAIL (Ref-1A-4)

☐ TE provides invalid H’ as part of AKE_Send_H_prime

➤ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
If DUT transmits LC_Init, then FAIL (Ref-1A-8)

If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS

If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) within 2 seconds of receipt of invalid H’, then FAIL (Ref-1A-1)

[Test Case 2 – AKE_Send_H_prime timeout after AKE_Stored_km]

(STEP 1A-11-2)

☐ TE sends AKE_Send_Cert message (with previously paired Receiver ID)

☐ DUT sends AKE_Stored_km message

➢ If DUT sends AKE_No_Stored_km message, then NOTE (“NOT JUDGED – DUT does not appear to implement persistent pairing for faster authentication”); TE ends test

➢ If DUT does not send AKE_Stored_km or AKE_No_Stored_km message, then FAIL (Ref-1A-4)

☐ TE does not respond with AKE_Send_H_prime within the 200 ms timeout at the transmitter

➢ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

➢ If DUT transmits LC_Init, then FAIL (Ref-1A-8)

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS

➢ If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) after expiration of the 200 ms timeout, then FAIL (Ref-1A-1)

[Test Case 3 – AKE_Send_H_prime timeout after AKE_No_Stored_km]

(STEP 1A-11-3)

☐ TE sends AKE_Send_Cert message (with unpaired Receiver ID)

☐ DUT sends AKE_No_Stored_km message
If DUT does not send AKE_No_Stored_km message, then FAIL (Ref-1A-3)

☐ TE does not respond with AKE_Send_H_prime within 1 sec

☑ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

☑ If DUT transmits LC_Init, then FAIL (Ref-1A-8)

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS

☑ If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) after expiration of the 1 second timeout, then FAIL (Ref-1A-1)
1A-12. Irregular Procedure – Pairing Failure

Test Objective

Verify the Source DUT considers it a failure of authentication if the Receiver does not send AKE_Send_Pairing_Info.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored km)’

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored km)’ except for following change:

☐ TE utilizes Receiver ID not paired to DUT

<Test Case>

The steps described under [Before Starting Authentication] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

[Authentication and Key Exchange]

(STEP 1A-01-2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ is performed.

(STEP 1A-12-1)

☐ TE sends AKE_Send_Cert message

☐ DUT sends AKE_No_Stored_km message

➢ If DUT does not transmit AKE_No_Stored_km message, then FAIL (Ref-1A-3)

➢ If DUT sends AKE_Stored_km message, then FAIL (Ref-1A-3)

➢ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

(STEP 1A-12-2)

☐ TE computes H' and sends AKE_Send_H_prime message within 1 sec
(STEP 1A-12-3)

☐ TE does not send AKE_Send_Pairing_Info message within 200 ms of the reception of AKE_Send_H_prime

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS

➢ If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) after expiration of the 200 ms timeout, then FAIL (Ref-1A-1)

Note: TE does not complete pairing.
1A-13. Irregular Procedure – Locality Failure

Test Objective

Verify the Source DUT considers it a failure of authentication if the Receiver provides a value for \(L' \) that does not match \(L \), or does not respond with \(L' \) in the allotted time.

Required Test Method

<Connection Setup>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))

<Test Case>

The steps described under [Before Starting Authentication] and [Authentication and Key Exchange] in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’ are performed.

[Locality Check]

(2) described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’ is performed.

Two test cases; both are performed.

[Test Case 1 – Invalid \(L' \)]

(STEP 1A-13-1)

- TE provides invalid \(L' \) as part of \(LC_{\text{Send L_prime}} \) message

(STEP 1A-13-2)

- DUT restarts Authentication and Key Exchange
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
- If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored \(k_m \))’, then PASS
If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) within 2 seconds of receipt of invalid L', then FAIL (Ref-1A-1)

[Test Case 2 – LC_Send_L_prime message timeout]

(STEP 1A-13-3)

☐ TE does not respond with LC_Send_L_prime within 20 ms after transmission of LC_Init

(STEP 1A-13-4)

☐ DUT restarts Authentication and Key Exchange

• If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS

• If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) within 2 seconds after time out, then FAIL (Ref-1A-1)
1B. **Downstream procedure with Repeater**

In these tests, an HDCP Repeater (TE pseudo-Repeater) is connected to the Transmitter (DUT).
1B-01. Regular Procedure – With Repeater

Test Objective

Verify the Source DUT works with a repeater attached under nominal circumstances

Required Test Method

<Connection Setup>

☐ Connect TE to the downstream HDCP-protected Interface Port of DUT

Note: If the DUT has an internal repeater (i.e. Source_Internal_Repeater is Y), the device count and depth need to be decreased by one to RxInfo:DEVICE_COUNT = 30 and DEPTH = 3 to account for the improper implementation.

<Configuration of TE>

<table>
<thead>
<tr>
<th>Message:</th>
<th>Parameter:</th>
<th>Value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication and Key Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKE_Send_Cert</td>
<td>RxCaps:REPEATER</td>
<td>TRUE</td>
</tr>
<tr>
<td></td>
<td>RxCaps:VERSION</td>
<td>0x02</td>
</tr>
<tr>
<td></td>
<td>r_rx</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>cert_rx</td>
<td>Valid</td>
</tr>
<tr>
<td>AKE_Send_H_prime</td>
<td>H’</td>
<td>Valid (within 200 ms timeout)</td>
</tr>
<tr>
<td>Pairing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKE_Send_Pairing_Info</td>
<td>E_{kh,k_m}</td>
<td>Valid (used only for first time)</td>
</tr>
</tbody>
</table>
Locality Check

<table>
<thead>
<tr>
<th>LC_Send_L_prime</th>
<th>L’</th>
<th>Valid (within 20 ms timeout)</th>
</tr>
</thead>
</table>

Authentication with Repeater

<table>
<thead>
<tr>
<th>RepeaterAuth_Send_ReceiverID_List</th>
<th>RxInfo:MAX_DEVS_EXCEEDED</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RxInfo:MAX_CASCADE_EXCEEDED</td>
<td>FALSE</td>
</tr>
<tr>
<td></td>
<td>RxInfo:HDCP2_0_REPEATER_DOWNSTREAM</td>
<td>FALSE</td>
</tr>
<tr>
<td></td>
<td>RxInfo:HDCP1_DEVICE_DOWNSTREAM</td>
<td>FALSE</td>
</tr>
<tr>
<td></td>
<td>RxInfo:DEVICE_COUNT</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>RxInfo:DEPTH</td>
<td>4</td>
</tr>
<tr>
<td>Receiver ID List</td>
<td>(DEVICE_COUNT * 5) bytes</td>
<td></td>
</tr>
<tr>
<td>seq_num_V</td>
<td>Valid</td>
<td></td>
</tr>
<tr>
<td>V’</td>
<td>16 bytes, Valid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(within 3 second timeout)</td>
<td></td>
</tr>
</tbody>
</table>

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored kₚ)’ are performed.

[Authentication with Repeaters]

STEP 1B-01-1

- TE clears MAX_CASCADE_EXCEEDED, MAX_DEVS_EXCEEDED, HDCP2_0_REPEATER_DOWNSTREAM and HDCP1_DEVICE_DOWNSTREAM flags, sets DEPTH and DEVICE_COUNT to the configured value, initializes seq_num_V to 0, generates the ReceiverID_List and computes V’ in the RepeaterAuth_Send_ReceiverID_List message.

- TE transmits RepeaterAuth_Send_ReceiverID_List message within the 3 second timeout of the receipt of SKE_Send_Eks.

- DUT transmits 128 least significant bits of V to TE in the RepeaterAuth_Send_Ack message.
 If DUT does not transmit RepeaterAuth_Send_Ack message within 1 s, then FAIL (Ref-1B-2)

 If 128 least significant bits of V transmitted by DUT do not match the 128 least significant bits of V' computed by the TE, then FAIL (Ref-1B-2)

(STEP 1B-01-2)

Note: The Transmitter DUT must complete Content Stream Management at least 100 ms before transmitting a given stream. Content Stream Management may be implemented in parallel with Authentication with Repeaters. The TE will support either method of Content Stream Management implemented in the DUT.

 DUT Transmits RepeaterAuth_Stream_Manage message
  If DUT does not transmit RepeaterAuth_Stream_Manage message within 5 sec, then FAIL (Ref-1B-5)

 TE responds with RepeaterAuth_Stream_Ready message within 100 ms

(STEP 1B-01-3)

 DUT begins transmitting of a given stream within 10 seconds of completion of Content Stream Management and Authentication with Repeater.

  If DUT begins transmitting of a given stream before 100 ms after completion of Content Stream Management, then FAIL (Ref-1B-5)

 If DUT successfully completes the authentication process, then PASS
1B-02. Irregular Procedure – Timeout of Receiver ID list

Test Objective

Verify the Source DUT considers it a failure of authentication if the downstream repeater does not respond with RepeaterAuth_Send_ReceiverID_List prior to expiration of watchdog timer.

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE does not respond with RepeaterAuth_Send_ReceiverID_List within the 3 second timeout of the receipt of SKE_Send_Eks

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

(STEP 1B-02-1)

☐ TE does not transmit RepeaterAuth_Send_ReceiverID_List within the 3 second timeout of reception of SKE_Send_Eks.

☐ DUT waits three seconds for the reception of RepeaterAuth_Send_ReceiverID_List

(STEP 1B-02-2)

☐ DUT disables HDCP encryption, if enabled, after the expiration of the three second timer

➤ If DUT disables encryption, if enabled, before the timer expires, then FAIL (Ref-1B-2)

➤ If DUT does not disable encryption, if enabled, after the timer expires, then FAIL (Ref-1B-2)

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS
➢ If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) after expiration of the 3 second timeout, then FAIL (Ref-1A-1)
1B-03. Irregular Procedure – Verify V’

Test Objective

Verify the Source DUT considers it a failure of authentication if the repeater provides a value for V’ that does not match V

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’ except for the following change:

- TE provides an incorrect value for V’

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

(STEP 1B-03-1)

- TE clears MAX_CASCADE_EXCEEDED, MAX_DEVS_EXCEEDED, HDCP2_0_REPEATER_DOWNSTREAM and HDCP1_DEVICE_DOWNSTREAM flags, setsDEPTH and DEVICE_COUNT to the configured value, initializes seq_num_V to 0, generates the ReceiverID_List and computes invalid V’ in the RepeaterAuth_Send_ReceiverID_List message

- TE transmits RepeaterAuth_Send_ReceiverID_List message within the 3 second timeout of the receipt of SKE_Send_Eks

(STEP 1B-03-2)

- DUT disables HDCP encryption, if enabled, after receiving invalid V’
 - If DUT does not disable encryption, if enabled, then FAIL (Ref-1B-2)

- If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then PASS
➢ If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) within 2 seconds of receipt of invalid V^*, then FAIL (Ref-1A-1)
1B-04. Irregular Procedure – MAX_DEVS_EXCEEDED

Test Objective

Verify the Source DUT considers it a failure of authentication if the repeater sets the MAX_DEVS_EXCEEDED bit in the RepeaterAuth_Send_ReceiverID_List message.

Required Test Method

(Connection Setup)

Same as ‘1B-01 Regular Procedure – With Repeater’

(Configuration of TE)

Same as ‘1B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE sets MAX_DEVS_EXCEEDED to ‘TRUE’ in RepeaterAuth_Send_ReceiverID_List message.

(Test Case)

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored kₘ)’ are performed.

(STEP 1B-04-1)

☐ TE clears MAX_CASCADE_EXCEEDED, DEPTH, DEVICE_COUNT, HDCP2_0_REPEATER_DOWNSTREAM and HDCP1_DEVICE_DOWNSTREAM flags, sets MAX_DEVS_EXCEEDED to ‘TRUE’ and does not generate the ReceiverID_List, seq_num_V or compute V’ in the RepeaterAuth_Send_ReceiverID_List message.

☐ TE transmits RepeaterAuth_Send_ReceiverID_List message within the 3 second timeout of the receipt of SKE_Send_Eks.

(STEP 1B-04-2)

☐ DUT disables HDCP encryption after receiving MAX_DEVS_EXCEEDED error.

➢ If DUT does not disable encryption after receiving MAX_DEVS_EXCEEDED error, then FAIL (Ref-1B-3)

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored kₘ)’, then PASS.
➢ If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) within 2 seconds of receipt of the MAX_DEVMS_EXCEEDED error, then FAIL (Ref-1A-1)
1B-05. Irregular Procedure – MAX_CASCADE_EXCEEDED

Test Objective

Verify the Source DUT considers it a failure of authentication if the repeater sets the MAX_CASCADE_EXCEEDED bit in the RepeaterAuth_Send_ReceiverID_List message.

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE sets MAX_CASCADE_EXCEEDED to ‘TRUE’ in RepeaterAuth_Send_ReceiverID_List message.

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

(STEP 1B-05-1)

☐ TE clears MAX_DEVS_EXCEEDED, DEPTH, DEVICE_COUNT, HDCP2_0_REPEATER_DOWNSTREAM and HDCP1_DEVICE_DOWNSTREAM flags, sets MAX_CASCADE_EXCEEDED to ‘TRUE’ and does not generate the ReceiverID_List, seq_num_V or compute V’ in the RepeaterAuth_Send_ReceiverID_List message.

☐ TE transmits RepeaterAuth_Send_ReceiverID_List message within the 3 second timeout of the receipt of SKE_Send_Eks.

(STEP 1B-05-2)

☐ DUT disables HDCP encryption, if enabled, after receiving MAX_CASCADE_EXCEEDED error.

➤ If DUT does not disable encryption, if enabled, after receiving MAX_CASCADE_EXCEEDED error, then FAIL (Ref-1B-3)

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS.
If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) within 2 seconds of receipt of the MAX_CASCADE_EXCEEDED error, then FAIL (Ref-1A-1)
1B-06. Irregular Procedure – Incorrect seq_num_V

Test Objective

Verify the Source DUT considers it a failure of authentication if the repeater provides a non-zero value in seq_num_V in the first RepeaterAuth_Send_ReceiverID_List message after AKE_Init.

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE provides a non-zero value for seq_num_V

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

(STEP 1B-06-1)

☐ TE clears MAX_CASCADE_EXCEEDED, MAX_DEVS_EXCEEDED, HDCP2.0_REPEATER_DOWNSTREAM and HDCP1_DEVICE_DOWNSTREAM flags, sets DEPTH and DEVICE_COUNT to the configured value, generates the ReceiverID_List, set seq_num_V to a non-zero value and computes V’ in the RepeaterAuth_Send_ReceiverID_List message

☐ TE transmits RepeaterAuth_Send_ReceiverID_List message within the 3 second timeout of the receipt of SKE_Send_Eks

(STEP 1B-06-2)

☐ DUT disables HDCP encryption after receiving a non-zero seq_num_V

➢ If DUT does not disable encryption after receiving a non-zero seq_num_V, then FAIL (Ref-3C-7)

☐ If DUT re-starts Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS
➢ If DUT does not attempt to re-start authentication by performing (STEP 1A-01-2) within 2 seconds of receipt of invalid V', then FAIL (Ref-1A-1)
1B-07. Regular Procedure – Re-authentication on HDCP_HPD

Test Objective

Verify that the Source DUT initiates re-authentication when a HDCP_HPD is received from the downstream repeater

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’ are performed.

The steps under [Authentication with Repeaters] described in ‘1B-01 Regular Procedure – With Repeater’ are performed.

(STEP 1B-07-1)

- TE de-asserts HDCP_HPD after RepeaterAuth_Send_ReceiverID_List message
- TE asserts HDCP_HPD

(STEP 1B-07-2)

- DUT restarts Authentication and Key Exchange
 - If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then FAIL (Ref-1A-7)
 - After HDCP_HPD is sent DUT may continue on with authentication/enable encryption, however if DUT does not restart authentication within 10 seconds of HDCP_HPD assert then FAIL (Ref-1A-7)
If DUT re-starts Authentication and Key Exchange on detecting asserted HDCP_HPD and performs (STEP 1A-01-1) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS.
1B-08. Regular Procedure – Re-authentication on REAUTH_REQ

Test Objective

Verify that the Source DUT initiates re-authentication when a REAUTH_REQ is received from the downstream repeater

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

The steps under [Authentication with Repeaters] described in ‘1B-01 Regular Procedure – With Repeater’ are performed.

(STEP 1B-08-1)

☐ TE transmits REAUTH_REQ by setting REAUTH_REQ bit in the RxStatus register

(STEP 1B-08-2)

☐ DUT restarts Authentication and Key Exchange

 ➢ If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then FAIL (Ref-1A-7)

 ➢ After REAUTH_REQ is sent DUT may continue on with authentication/enable encryption, however if DUT does not restart authentication within 10 seconds of REAUTH_REQ then FAIL (Ref-1A-7)

☐ If DUT re-starts Authentication and Key Exchange on detecting REAUTH_REQ and performs (STEP 1A-01-1) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS
1B-09. Irregular Procedure – Rollover of seq_num_V

Test Objective

Verify that the Source DUT initiates re-authentication when a rollover of seq_num_V is detected from the downstream repeater

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ’1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

The steps under [Authentication with Repeaters] described in ’1B-01 Regular Procedure – With Repeater’ are performed.

(STEP 1B-09-1)

- TE sets seq_num_V to OxFFFFFFh
- TE simulates disconnect of an active downstream device by decrementing $DEVICE_COUNT$ and adjusting the $ReceiverID_List$ and transmits $RepeaterAuth_Send_ReceiverID_List$ message
- DUT transmits 128 least significant bits to TE in the $RepeaterAuth_Send_Ack$ message
 - If DUT does not transmit $RepeaterAuth_Send_Ack$ message within one second, then FAIL (Ref-1B-2)
 - If 128 least significant bits transmitted by DUT do not match the 128 least significant bits computed by the TE, then FAIL (Ref-1B-2)

(STEP 1B-09-2)

- TE sets seq_num_V to Ox000000h (indicating rollover of seq_num_V)
• TE simulates connection of an active downstream device (same device that
disconnected in STEP 1B-07-1) by incrementing DEVICE_COUNT and adjusting the
ReceiverID_List and transmits RepeaterAuth_Send_ReceiverID_List message

(STEP 1B-09-3)

• DUT restarts Authentication and Key Exchange upon detecting rollover of seq_num_V

 ➢ If DUT does not restart Authentication and Key Exchange and complete (STEP
 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected
 Receiver (With stored k_m)’, then FAIL (Ref-1A-7)

• If DUT detects the rollover of seq_num_V as a failure of authentication, and re-starts
 Authentication and Key Exchange and performs (STEP 1A-01-2) as described in ‘1A-01
 Regular Procedure – With previously connected Receiver (With stored k_m)’, then PASS
1B-10. Irregular Procedure – Failure of Content Stream Management

Test Objective

Verify that the Source DUT re-attempts Content Stream Management following a failure of Content Stream Management.

Required Test Method

<Connection Setup>

Same as ‘1B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’ except for following change:

☐ TE provides an incorrect value for M'

<Test Case>

The steps under [Before Starting Authentication] to [Session Key Exchange] described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored k_m)’ are performed.

[Authentication with Repeaters]

(Step 1B-01-1) described in ‘1B-01 Regular Procedure – With Repeater’ is performed.

Two test cases; both are performed

[Test Case 1 – Incorrect value for M']

(Step 1B-10-1)

☐ DUT transmits RepeaterAuth_Stream_Manage message

➤ If DUT does not transmit RepeaterAuth_Stream_Manage message within 5 sec, then FAIL (Ref-1A-1)

☐ TE responds with RepeaterAuth_Stream_Ready message within 100 ms with incorrect value for M'

(Step 1B-10-2)

☐ DUT transmits RepeaterAuth_Stream_Manage message with incremented seq_num_M
If DUT transmits content stream without resending RepeaterAuth_Stream_Manage message, then FAIL (Ref-1A-1)

If DUT transmits RepeaterAuth_Stream_Manage message with same seq_num_M, then FAIL (Ref-1B-5)

If DUT does not transmit new RepeaterAuth_Stream_Manage message, then WARNING (Ref-1A-1)

If DUT transmits new RepeaterAuth_Stream_Manage message after failure of M’ comparison, then PASS

[Test Case 2 – Timeout of RepeaterAuth_Stream_Ready message]

(STEP 1B-10-3)

DUT transmits RepeaterAuth_Stream_Manage message

If DUT does not transmit RepeaterAuth_Stream_Manage message within 5 sec, then FAIL (Ref-1A-1)

TE does not respond with RepeaterAuth_Stream_Ready message within 100 ms

(STEP 1B-10-4)

DUT transmits RepeaterAuth_Stream_Manage message with incremented seq_num_M

If DUT transmits content stream without resending RepeaterAuth_Stream_Manage message, then FAIL (Ref-1B-5)

If DUT transmits RepeaterAuth_Stream_Manage message with same seq_num_M, then FAIL (Ref-1B-5)

If DUT does not transmit new RepeaterAuth_Stream_Manage message, then WARNING (Ref-1A-1)

If DUT transmits new RepeaterAuth_Stream_Manage message after timeout of 100 ms timer, then PASS
2. **Receiver Tests**

Receivers (Sink DUTs) are tested for compliance with the specification by connecting them to Transmitters (TE pseudo-Source).

2C. Upstream procedure with Transmitter

Receiver’s upstream procedure with Transmitter is tested with an HDCP-capable Transmitter. Make sure that the DUT maintains “connection” during the test, unless “receiver disconnect" is needed during the test.

In these tests, an HDCP Transmitter (TE Pseudo-source) is connected to the Receiver (DUT).
2C-01. Regular Procedure – With transmitter

Test Objective

Verify the Receiver DUT works with an attached source under nominal circumstances

Required Test Method

<Connection Setup>

- Connect TE to the upstream HDCP-protected Interface Port of DUT

![Diagram]

- TE (pseudo-Source) \[\rightarrow \] HDCP Interface \[\rightarrow \] DUT (Sink)

<Test Case>

[Before Starting Authentication]

(STEP 2C-01-1)

- TE detects asserted HDCP_HPD
 - If DUT does not assert HDCP_HPD within 10 seconds, then FAIL (Ref-2C-1)

[Authentication and Key Exchange]

(STEP 2C-01-2)

- TE begins sending unencrypted video signal with HDCP Encryption disabled
- TE transmits AKE_Init message
- DUT transmits AKE_Send_Cert message
 - If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)
 - If AKE_Send_Cert:RxCaps:REPEATER is ‘TRUE’, then FAIL (Ref-2C-3)
 - If DUT transmits facsimile keys for the \(r_n \) value as part of the AKE_Send_Cert message, then FAIL (Ref-2C-5)

Two test cases; both are performed
[Test Case 1 – Not previously connected *Receiver ID*]

STEP 2C-01-3
- TE transmits AKE_No_Stored_km message

STEP 2C-01-4
- DUT transmits AKE_Send_H_prime message
 - If DUT does not transmit AKE_Send_H_prime within one second timeout, then FAIL (Ref-2C-2)
 - If H' is not equal to H, then FAIL (Ref-2C-2)

[Pairing]

STEP 2C-01-5
- DUT transmits AKE_Send_Pairing_Info message
 - If DUT does not transmit AKE_Send_Pairing_Info message within 200 ms of AKE_Send_H_prime message, then FAIL (Ref-1A-4)

[Test Case 2 – Previously connected *Receiver ID*]

STEP 2C-01-6
- TE transmits AKE_Stored_km message

STEP 2C-01-7
- DUT transmits AKE_Send_H_prime message
 - If DUT does not transmit AKE_Send_H_prime within 200 ms timeout, then FAIL (Ref-2C-2)
 - If H' is not equal to H, then FAIL (Ref-2C-2)
 - If DUT transmits AKE_Send_Pairing_Info, then FAIL (Ref-1A-4)

[Both test cases]

[Locality Check]

STEP 2C-01-8
- TE transmits LC_Init message
[Session Key Exchange]

(STEP 2C-01-9)

- DUT sends LC_Send_L_prime message
 - If DUT does not transmit LC_Send_L_prime message within 20 ms of transmission of LC_Init message, then FAIL (Ref-2C-4)
 - If L’ does not match L, then FAIL (Ref-2C-4)

- TE transmits SKE_Send_Eks message
- TE enables HDCP Encryption 200 ms after transmitting SKE_Send_Eks message
- TE transmits visible test pattern to DUT
- If DUT completes the authentication process and test pattern is viewed successfully, then PASS
2C-02. Irregular Procedure – New Authentication after AKE_Init

Test Objective

Verify the Receiver DUT restarts authentication when a new AKE_Init and \(r_{tx} \) is transmitted right after the transmission of AKE_Init in the unauthenticated state.

Required Test Method

<Connection Setup>

Same as ‘2C-01 Regular Procedure – With Transmitter’

<Test Case>

The steps described under [Before Starting Authentication] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Authentication and Key Exchange]

(Step 2C-01-2) described in ‘2C-01 Regular Procedure – With Transmitter’ is performed.

(STEP 2C-02-1)

- TE transmits AKE_Init message

(STEP 2C-02-2)

- DUT transmits AKE_Send_Cert message

 - If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)

 - If AKE_Send_Cert:RxCaps:REPEATER is ‘TRUE’, then FAIL (Ref-2C-3)

 - If DUT transmits facsimile keys for the \(r_{tx} \) value as part of the AKE_Send_Cert message, then FAIL (Ref-2C-5)

 - If DUT transmits an \(r_{tx} \) value that is identical to the one previously sent in the AKE_Send_Cert message then FAIL (Ref-2C-6)

The steps under [Test Case 2 – Previously connected Receiver ID] described in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

- If DUT successfully completes authentication with the new \(r_{tx} \) value provided in the second AKE_Init message, then PASS
2C-03. Irregular Procedure – New Authentication during Locality Check

Test Objective

Verify the Receiver DUT restarts authentication when a new AKE_Init and \(r_{tx} \) is transmitted right after the reception of LC_Init

Required Test Method

<Connection Setup>

Same as ‘2C-01 Regular Procedure – With Transmitter’

<Test Case>

The steps described under [Before Starting Authentication] and [Authentication and Key Exchange] (for [Test Case 1 – Not previously connected Receiver ID]) in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Locality Check]

(STEP 2C-03-1)

☐ TE transmits LC_Init message

☐ TE transmits AKE_Init message

(STEP 2C-03-2)

☐ DUT transmits AKE_Send_Cert message

- If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)
- If DUT transmits facsimile keys for the \(r_{tx} \) value as part of the AKE_Send_Cert message, then FAIL (Ref-2C-5)
- If DUT transmits an \(r_{tx} \) value found in the AKE_Send_Cert message that is identical to the one previously sent in the AKE_Send_Cert message, then FAIL (Ref-2C-6)

The steps under [Test Case 1 – Not previously connected Receiver ID] described in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

☐ If DUT successfully completes authentication with the new \(r_{tx} \) value provided in the second AKE_Init message, then PASS
2C-04. Irregular Procedure – New Authentication after SKE_Send_Eks

Test Objective

Verify the Receiver DUT restarts authentication when a new AKE_Init and \(r_{tx} \) is transmitted right after the reception of SKE_Send_Eks.

Required Test Method

<Connection Setup>

Same as ‘2C-01 Regular Procedure – With Transmitter’

<Test Case>

The steps described under [Before Starting Authentication] and [Authentication and Key Exchange] (for [Test Case 2 – Previously connected Receiver ID]) and [Locality Check] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Session Key Exchange]

(STEP 2C-04-1)

- TE transmits SKE_Send_Eks message
- TE transmits AKE_Init message

(STEP 2C-04-2)

- DUT transmits AKE_Send_Cert message
 - If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)
 - If DUT transmits facsimile keys for the \(r_{tx} \) value as part of the AKE_Send_Cert message, then FAIL (Ref-2C-5)
 - If DUT transmits an \(r_{tx} \) value that is identical to the one previously sent in the AKE_Send_Cert message then FAIL (Ref-2C-6)

The steps under [Test Case 2 – Previously connected Receiver ID] described in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

- If DUT successfully completes authentication with the new \(r_{tx} \) value provided in the second AKE_Init message, then PASS
2C-05. Irregular Procedure – New Authentication during Link Synchronization

Test Objective

Verify the Receiver DUT restarts authentication when a new AKE_Init and \(r_{tx} \) is transmitted during Link Synchronization.

Required Test Method

<Connection Setup>

Same as ‘2C-01 Regular Procedure – With Transmitter’

<Test Case>

The steps described under [Before Starting Authentication] and [Authentication and Key Exchange] (for [Test Case 2 – Previously connected Receiver ID]) and [Locality Check] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Session Key Exchange]

(STEP 2C-05-1)

- TE transmits SKE_Send_Eks message
- TE enables HDCP Encryption 200 ms after transmitting SKE_Send_Eks message
- TE transmits AKE_Init message

(STEP 2C-05-2)

- DUT transmits AKE_Send_Cert message
 - If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)
 - If DUT transmits facsimile keys for the \(r_{tx} \) value as part of the AKE_Send_Cert message, then FAIL (Ref-2C-5)
 - If DUT transmits an \(r_{tx} \) value that is identical to the one previously sent in the AKE_Send_Cert message then FAIL (Ref-2C-6)

The steps under [Test Case 2 – Previously connected Receiver ID] described in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

- If DUT successfully completes authentication with the new \(r_{tx} \) value provided in the second AKE_Init message, then PASS
3. Repeater Tests

Repeater DUTs are tested for compliance with the specification by connecting them to Receivers (TE pseudo-Sink), Repeaters (TE pseudo-Repeater) and Transmitters (TE pseudo-Source).

Note: For all authentication failures Tx must re-attempt authentication at least once (Ref-1A-1).

3A. Downstream Procedure with Receiver

In this test, a Receiver (TE pseudo-Sink) is connected to the downstream HDCP-protected Interface Port of the Repeater DUT. An HDCP Transmitter (providing HDCP-protected content) is connected to the upstream HDCP-protected Interface Port of the Repeater DUT.
3A-01. Regular Procedure – With previously connected Receiver (With stored \(k_m \))

Test Objective

Verify the Repeater’s implementation of the HDCP protocol when an HDCP Receiver (that was previously connected) is attached.

Required Test Method

<Connection Setup>

- Connect an HDCP Source device to the upstream HDCP-protected Interface Port of DUT
- Connect TE (pseudo-Sink) to the downstream HDCP-protected Interface Port of DUT

![Diagram showing connection setup](image)

<Configuration of TE>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))’

<Test Case>

Same as ‘1A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))’
3A-02. Regular Procedure – With newly connected Receiver (Without stored k_m)

Test Objective

Verify the Repeater’s implementation of the HDCP protocol when an HDCP Receiver (not previously connected) is attached.

Required Test Method

<Connection Setup>

Same as ‘3A-01 Regular Procedure – With previously connected receiver (With stored k_m)’

<Configuration of TE>

Same as ‘1A-02 Regular Procedure – With newly connected Receiver (Without stored k_m)’

<Test Case>

Same as ‘1A-02 Regular Procedure – With newly connected Receiver (Without stored k_m)’
3A-03. Irregular Procedure – Rx certificate not received

Test Objective

Verify the Repeater DUT considers it a failure of authentication when the certificate is not received from the Rx during AKE.

Required Test Method

<Connection Setup>

Same as ‘3A-01 Regular Procedure – With previously connected receiver (With stored \(k_m \))’

<Configuration of TE>

Same as ‘1A-08 Irregular Procedure – Rx certificate not received

<Test Case>

Same as ‘1A-08 Irregular Procedure – Rx certificate not received’

Test Objective

Verify the Repeater DUT considers it a failure of authentication when verification of Receiver certificate fails.

Required Test Method

<Connection Setup>

Same as ‘3A-01 Regular Procedure – With previously connected receiver (With stored k_m)’

<Configuration of TE>

Same as ‘1A-09 Irregular Procedure – Verify Receiver Certificate’

<Test Case>

Same as ‘1A-09 Irregular Procedure – Verify Receiver Certificate’
3A-05. Irregular Procedure – Invalid H’

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the Receiver provides a value for H’ that does not match H, or does not respond with H’ in the allotted time.

Required Test Method

<Connection Setup>

Same as ‘3A-01 Regular Procedure – With previously connected receiver (With stored k_m)’

<Configuration of TE>

Same as ‘1A-11 Irregular Procedure – Invalid H’’

<Test Case>

Same as ‘1A-11 Irregular Procedure – Invalid H’’
3A-06. Irregular Procedure – Pairing Failure

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the Receiver does not send AKE_Send_Pairing_Info.

Required Test Method

<Connection Setup>

Same as ‘3A-01 Regular Procedure – With previously connected receiver (With stored k_m)’

<Configuration of TE>

Same as ‘1A-12 Irregular Procedure – Pairing Failure’

<Test Case>

Same as ‘1A-12 Irregular Procedure – Pairing Failure’
3A-07. Irregular Procedure – Locality Failure

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the Receiver provides a value for L’ that does not match L, or does not respond with L’ in the allotted time.

Required Test Method

<Connection Setup>

Same as ‘3A-01 Regular Procedure – With previously connected receiver (With stored k_m)’

<Configuration of TE>

Same as ‘1A-13 Irregular Procedure – Locality Failure’

<Test Case>

Same as ‘1A-13 Irregular Procedure – Locality Failure’
3B. **Downstream Procedure with Repeater**

In this test, a Repeater (TE pseudo-Repeater) is connected to the downstream HDCP-protected Interface Port of the Repeater DUT. An HDCP Transmitter (providing HDCP-protected content) is connected to the upstream HDCP-protected Interface Port of the Repeater DUT.
3B-01. Regular Procedure – With Repeater

Test Objective

Verify the Repeater DUT works with a repeater attached under nominal circumstances

Required Test Method

<Connection Setup>

- Connect an HDCP Source device to the upstream HDCP-protected Interface Port of DUT
- Connect TE to the downstream HDCP-protected Interface Port of DUT

<Configuration of TE>

Same as ‘1B-01 Regular Procedure – With Repeater’ except for the following change

- RepeaterAuth_Send_ReceiverID_List:DEVICE_COUNT = 30
- RepeaterAuth_Send_ReceiverID_List:DEPTH = 3

<Test Case>

Same as ‘1B-01 Regular Procedure – With Repeater’
3B-02. Irregular Procedure – Timeout of Receiver ID list

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the downstream repeater does not respond with RepeaterAuth_Send_ReceiverID_List prior to expiration of watchdog timer.

Required Test Method

<Connection Setup>

Same as ‘3B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘3B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE does not respond with RepeaterAuth_Send_ReceiverID_List within the 3 second timeout of the receipt of SKE_Send_Eks

<Test Case>

Same as ‘1B-02 Irregular Procedure – Timeout of Receiver ID list’
3B-03. Irregular Procedure – Verify V’

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the repeater provides a value for V’ that does not match V

Required Test Method

<Connection Setup>

Same as ‘3B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘3B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE provides an incorrect value for V’

<Test Case>

Same as ‘1B-03 Irregular Procedure – Verify V’
3B-04. Irregular Procedure – MAX_DEVS_EXCEEDED

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the repeater sets the MAX_DEVS_EXCEEDED bit in the RepeaterAuth_Send_ReceiverID_List message.

Required Test Method

<Connection Setup>

Same as ‘3B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘3B-01 Regular Procedure – With Repeater’ except for the following change:

- TE sets MAX_DEVS_EXCEEDED to ‘TRUE’ in RepeaterAuth_Send_ReceiverID_List message

<Test Case>

Same as ‘1B-04 Irregular Procedure – MAX_DEVS_EXCEEDED’
3B-05. Irregular Procedure – MAX_CASCADE_EXCEEDED

Test Objective

Verify the Repeater DUT considers it a failure of authentication if the repeater sets the MAX_CASCADE_EXCEEDED bit in the RepeaterAuth_Send_ReceiverID_List message.

Required Test Method

<Connection Setup>

Same as ‘3B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘3B-01 Regular Procedure – With Repeater’ except for the following change:

☐ TE sets MAX_CASCADE_EXCEEDED to ‘TRUE’ in RepeaterAuth_Send_ReceiverID_List message

<Test Case>

Same as ‘1B-05 Irregular Procedure – MAX_CASCADE_EXCEEDED’
3B-06. Irregular Procedure – Rollover of seq_num_V

Test Objective

Verify the Repeater DUT initiates re-authentication when a rollover of seq_num_V is detected from the downstream repeater

Required Test Method

<Connection Setup>

Same as ‘3B-01 Regular Procedure – With Repeater’

<Configuration of TE>

Same as ‘3B-01 Regular Procedure – With Repeater’

<Test Case>

Same as ‘1B-09 Irregular Procedure – Rollover of seq_num_V’
3B-07. Irregular Procedure – Failure of Content Stream Management

Test Objective

Verify the Repeater DUT re-attempts Content Stream Management following a failure of Content Stream Management

Required Test Method

<Connection Setup>

Same as ‘3B-01 Regular Procedure – With Repeater’

Configuration of TE>

Same as ‘3B-01 Regular Procedure – With Repeater’ except for following change:

☐ TE provides an incorrect value for M'

<Test Case>

Same as ‘1B-10 Irregular Procedure – Failure of Content Stream Management’
3C. Upstream Procedure with Transmitter

In this test, the Repeater DUT is tested under the following two connection setups:

- An HDCP Transmitter (TE pseudo-Source) is connected to the upstream HDCP-protected Interface Port and an HDCP Receiver (TE pseudo-Sink) is connected to the downstream HDCP-protected Interface Port of the Repeater DUT.

- An HDCP Transmitter (TE pseudo-Source) is connected to the upstream HDCP-protected Interface Port and an HDCP Repeater (TE pseudo-Repeater) is connected to the downstream HDCP-protected Interface Port of the Repeater DUT.

☐ Repeater (DUT) Connected to Transmitter (TE pseudo-Source) and Receiver (TE pseudo-Sink)

In this test, an HDCP Transmitter (TE pseudo-Source) is connected to the upstream HDCP-protected Interface Port of the Repeater DUT. An HDCP Receiver (TE pseudo-Sink) is connected to the downstream HDCP-protected Interface Port of the Repeater (DUT).
3C-01. Regular Procedure – Transmitter – DUT – Receiver

Test Objective

Verify the Repeater DUT’s implementation of the HDCP Protocol when an HDCP Transmitter is connected to the upstream Repeater port and an HDCP Receiver is connected to the downstream Repeater port

Required Test Method

<Connection Setup>

☐ Connect TE (pseudo-Source) to the upstream HDCP-protected Interface Port of DUT

☐ Connect an HDCP Sink to the downstream HDCP-protected Interface Port of DUT

Note: A device that has already passed the compliance test is used as the Sink device

<Test Case>

The steps described under [Before Starting Authentication] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Authentication and Key Exchange]

(Step 2C-01-2) described in ‘2C-01 Regular Procedure – With Transmitter’ are performed, with the following changes:

☐ TE begins sending unencrypted video signal with HDCP Encryption disabled

☐ TE transmits AKE_Init message

☐ DUT transmits AKE_Send_Cert message

➤ If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)

➤ If REPEATER is ‘FALSE’ in AKE_Send_Cert message, then FAIL (Ref-2C-3)

The remaining steps described in [Authentication and Key Exchange] (both test cases) and the steps described in [Pairing], [Locality Check], and [Session Key Exchange] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.
[Authentication with Repeaters]

STEP 3C-01-1

- DUT transmits `RepeaterAuth_Send_ReceiverID_List` message
 - If DUT does not transmit `RepeaterAuth_Send_ReceiverID_List` message within 3 second timeout of `SKE_Send_Eks`, then FAIL (Ref-1B-2)
 - If `RepeaterAuth_Send_ReceiverID_List:MAX_DEVS_EXCEEDED` is ‘TRUE’, then FAIL (Ref-3C-1)
 - If `RepeaterAuth_Send_ReceiverID_List:MAX_CASCADE_EXCEEDED` is ‘TRUE’, then FAIL (Ref-3C-1)
 - If `RepeaterAuth_Send_ReceiverID_List:DEPTH` is not one, then FAIL (Ref-3C-2)
 - If `RepeaterAuth_Send_ReceiverID_List:DEVICE_COUNT` is not one, then FAIL (Ref-3C-2)
 - If `RepeaterAuth_Send_ReceiverID_List:HDCP2_0_REPEATER_DOWNSTREAM` is ‘TRUE’, then FAIL
 - If `RepeaterAuth_Send_ReceiverID_List:HDCP1DEVICE_DOWNSTREAM` is ‘TRUE’, then FAIL
 - If `RepeaterAuth_Send_ReceiverID_List:seq_num_V` is not 0, then FAIL (Ref-3C-7)

STEP 3C-01-2

- TE compares computed value of most significant 128 bits of V to 128 bits of V’ received in `RepeaterAuth_Send_ReceiverID_list`
 - If most significant 128 bits of V’ do not match the most significant 128 bits of V, then FAIL (Ref-1B-2)

- TE transmits `RepeaterAuth_Send_Ack` message with valid least 128 bits of V within one second of receipt of `RepeaterAuth_Send_ReceiverID_list`

STEP 3C-01-3

[Content Stream Management] – Two test cases; both are performed.

 [Test Case 1 – Content Stream Management done in serial with propagation of topology information]
TE transmits RepeaterAuth_Stream_Manage message within 5 sec after transmitting RepeaterAuth_Send_Ack message with Type set to 0

[Test Case 2 – Content Stream Management done in parallel with propagation of topology information]

TE transmits RepeaterAuth_Stream_Manage message within 200 ms after successful completion of Session Key Exchange with Type set to 0

[Both Test Cases]

DUT transmits RepeaterAuth_Stream_Ready message

- If DUT does not transmit RepeaterAuth_Stream_Ready message within 100 ms of transmission of RepeaterAuth_Stream_Manage, then FAIL (Ref-1B-5)

- If the value of M’ received in the RepeaterAuth_Stream_Ready message does not match the TE’s calculated value of M, then FAIL (Ref-1B-5)

TE Enables HDCP Encryption

(STEP 3C-01-4)

If DUT completes the authentication process successfully, then PASS
3C-02. Regular Procedure – ReceiverID_List Propagation when an Active Receiver is Disconnected Downstream

Test Objective

Verify the Repeater DUT sends an updated ReceiverID_List message when an active downstream Receiver is disconnected when HDCP Content is flowing.

Required Test Method

This test is performed if Repeater_MultipleOutputs = Y, otherwise SKIP

<Connection Setup>

- Connect TE (pseudo-Source) to the upstream HDCP-protected Interface Port of DUT
- Connect TE (pseudo-Sink) to the one downstream HDCP-protected Interface Port of DUT
- Connect HDCP Sink to another downstream HDCP-protected Interface Port of DUT

Note: A device that has already passed the compliance test is used as the Sink device

<Test Case>

The steps described under [Before Starting Authentication] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

The steps described under [Authentication and Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

The remaining steps described in [Authentication and Key Exchange] and the steps described in [Pairing], [Locality Check], and [Session Key Exchange] in ‘2C-01 Regular Procedure – With Transmitter’ are performed.

[Authentication with Repeaters]
(STEP 3C-01-1) described in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ is performed with the following changes:

- DUT transmits RepeaterAuth_Send_ReceiverID_List message
 - If DUT does not transmit RepeaterAuth_Send_ReceiverID_List message within 3 second timeout of SKE_Send_Eks, then FAIL (Ref-1B-2)
 - If RepeaterAuth_Send_ReceiverID_List:MAX_DEVS_EXCEEDED is ‘TRUE’, then FAIL (Ref-3C-1)
 - If RepeaterAuth_Send_ReceiverID_List:MAX_CASCADE_EXCEEDED is ‘TRUE’, then FAIL (Ref-3C-1)
 - If RepeaterAuth_Send_ReceiverID_List:DEPTH is not one, then FAIL (Ref-3C-2)
 - If RepeaterAuth_Send_ReceiverID_List:DEVICE_COUNT is not two, then FAIL (Ref-3C-2)
 - If RepeaterAuth_Send_ReceiverID_List:HDCP2_0_REPEATER_DOWNSTREAM is ‘TRUE’, then FAIL
 - If RepeaterAuth_Send_ReceiverID_List:HDCP1_DEVICE_DOWNSTREAM is ‘TRUE’, then FAIL
 - If RepeaterAuth_Send_ReceiverID_List:seq_num_V is not 0, then FAIL (Ref-3C-7)

(STEP 3C-01-2) described in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ is performed

[Disconnect of Downstream Sink]

(STEP 3C-02-1)

- TE (pseudo-Sink) de-asserts HDCP_HPD
 - If DUT de-asserts HDCP_HPD to upstream, then FAIL (Ref-3C-3)

(STEP 3C-02-2)

- DUT transmits RepeaterAuth_Send_ReceiverID_List message
 - If DUT does not transmit RepeaterAuth_Send_ReceiverID_List message within 3 second of TE (pseudo-Sink) disconnect, then FAIL (Ref-1B-2)
If RepeaterAuth_Send_ReceiverID_List:MAX_DEVS_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)

If RepeaterAuth_Send_ReceiverID_List:MAX_CASCADE_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)

If RepeaterAuth_Send_ReceiverID_List:DEPTH is not one, then FAIL(Ref-3C-2)

If RepeaterAuth_Send_ReceiverID_List:DEVICE_COUNT is not one, then FAIL(Ref-3C-2)

If content stream to remaining receiver is interrupted, then WARNING (Ref-3C-3)

If the DUT does not propagate de-asserted HDCP_HPD to upstream when an active downstream Sink is disconnected, and transmits an updated RepeaterAuth_Send_ReceiverID_List message, then PASS
3C-03. **Regular Procedure – ReceiverID_List Propagation when an Active Receiver is Connected Downstream**

Test Objective

Verify the Repeater DUT sends an updated ReceiverID_List message when a new active downstream Receiver is connected and HDCP Content is flowing.

Required Test Method

This test is performed if Repeater_MultipleOutputs = Y, otherwise SKIP

<Connection Setup>

Same as ‘3C-02 Regular Procedure – Receiver ReceiverID_List Propagation when an Active Receiver is Disconnected Downstream’ with one exception:

- TE (pseudo-Sink) is in disconnected state

<Test Case>

The steps described under [Before Starting Authentication] to [Authentication with Repeaters] in ‘3C-02 Regular Procedure – Receiver ReceiverID_List Propagation when an Active Receiver is Disconnected and Reconnected Downstream’ are performed

[Connect Active Downstream Sink]

(STEP 3C-03-1)

- TE (pseudo-Sink) asserts HDCP_HPD to DUT
 - If the DUT propagates HDCP_HPD to upstream, then FAIL (Ref-3C-3)

(STEP 3C-03-2)

- DUT transmits RepeaterAuth_Send_ReceiverID_List message
 - If DUT does not transmit RepeaterAuth_Send_ReceiverID_List message within 3 second of TE (pseudo-Sink) connect, then FAIL(Ref-1B-2)
 - If RepeaterAuth_Send_ReceiverID_List:MAX_DEVS_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)
 - If RepeaterAuth_Send_ReceiverID_List:MAX_CASCADE_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)
If RepeaterAuth_Send_ReceiverID_List:DEPTH is not one, then FAIL(Ref-3C-2)

If RepeaterAuth_Send_ReceiverID_List:DEVICE_COUNT is not two, then FAIL(Ref-3C-2)

If content stream to remaining receiver is interrupted, then WARNING (Ref-3C-3)

If the DUT transmits updated RepeaterAuth_Send_ReceiverID_List message upon connection of a new downstream HDCP Receiver, then PASS
3C-04. Irregular Procedure – New Authentication after AKE_Init

Test Objective

Verify the Repeater DUT restarts authentication when a new AKE_Init and \(r_{tx} \) is transmitted right after the transmission of AKE_Init in the unauthenticated state.

Required Test Method

<Connection Setup>

Same as ‘3C-01 Regular Procedure – Transmitter – DUT - Receiver’

<Test Case>

Same as ‘2C-02 Irregular Procedure – New Authentication after AKE_Init’ with the following changes:

(STEP 2C-01-2)

- TE begins sending unencrypted video signal with HDCP Encryption disabled
- TE transmits AKE_Init message
- DUT transmits AKE_Send_Cert message
 - If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)
 - If AKE_Send_Cert:REPEATER is ‘FALSE’, then FAIL (Ref-2C-3)

The steps described under [Test Case 1 – Not previously connected Receiver ID] in ‘2C-01 Regular Procedure – With Transmitter’ are performed

- If DUT successfully completes authentication with new \(r_{tx} \) value provided in the second AKE_Init message, then PASS
3C-05. Irregular Procedure – New Authentication during Locality Check

Test Objective

Verify the Repeater DUT restarts authentication when a new AKE_Init and r_{tx} is transmitted right after the reception of LC_Init

Required Test Method

<Connection Setup>

Same as ‘3C-01 Regular Procedure – Transmitter – DUT - Receiver’

<Test Case>

Same as ‘2C-03 Irregular Procedure – New Authentication during Locality Check’ with the following changes:

(STEP 2C-01-2)

☐ TE begins sending unencrypted video signal with HDCP Encryption disabled

☐ TE transmits AKE_Init message

☐ DUT transmits AKE_Send_Cert message

➢ If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)

➢ If AKE_Send_Cert:REPEATER is ‘FALSE’, then FAIL (Ref-2C-3)

The steps described under [Test Case 1 – Not previously connected Receiver ID] in ‘2C-01 Regular Procedure – With Transmitter’ are performed

☐ If DUT successfully completes authentication with new r_{tx} value provided in the second AKE_Init message, then PASS
3C-06. Irregular Procedure – New Authentication after SKE_Send_Eks

Test Objective

Verify the Repeater DUT restarts authentication when a new AKE_Init and \(r_{tx} \) is transmitted right after the reception of SKE_Send_Eks

Required Test Method

<Connection Setup>

Same as ‘3C-01 Regular Procedure – Transmitter – DUT - Receiver’

<Test Case>

Same as ‘2C-04 Irregular Procedure – New Authentication after SKE_Send_Eks’ with the following changes:

(STEP 2C-01-2)

- TE begins sending unencrypted video signal with HDCP Encryption disabled
- TE transmits AKE_Init message
- DUT transmits AKE_Send_Cert message
 - If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)
 - If AKE_Send_Cert:REPEATER is ‘FALSE’, then FAIL (Ref-2C-3)

The steps described under [Test Case 1 – Not previously connected Receiver ID] in ‘2C-01 Regular Procedure – With Transmitter’ are performed

- If DUT successfully completes authentication with new \(r_{tx} \) value provided in the second AKE_Init message, then PASS
3C-07. Irregular Procedure – New Authentication during Link Synchronization

Test Objective

Verify the Repeater DUT restarts authentication when a new AKE_Init and rtx is transmitted during Link Synchronization.

Required Test Method

<Connection Setup>

Same as ‘3C-01 Regular Procedure – Transmitter – DUT - Receiver’

<Test Case>

Same as ‘2C-05 Irregular Procedure – New Authentication during Link Synchronization’ with the following changes:

(STEP 2C-01-2)

☐ TE begins sending unencrypted video signal with HDCP Encryption disabled

☐ TE transmits AKE_Init message

☐ DUT transmits AKE_Send_Cert message

➤ If DUT does not transmit AKE_Send_Cert message, then FAIL (Ref-2C-2)

➤ If AKE_Send_Cert:REPEATER is ‘FALSE’, then FAIL (Ref-2C-3)

The steps described under [Test Case 1 – Not previously connected Receiver ID] in ‘2C-01 Regular Procedure – With Transmitter’ are performed

☐ If DUT successfully completes authentication with new r_rx value provided in the second AKE_Init message, then PASS
3C-08. Irregular Procedure – Rx Certificate invalid

Test Objective

Verify the Repeater DUT considers it a failure of authentication and does not send RepeaterAuth_Send_ReceiverID_List message when the certificate received from the Receiver is invalid.

Required Test Method

<Connection Setup>

- Connect TE (pseudo-Source) to the upstream HDCP-protected Interface Port of DUT
- Connect TE (pseudo-Sink) to the downstream HDCP-protected Interface Port of DUT

<Configuration of TE (pseudo-Sink)>

Same as ‘1A-09 Irregular Procedure – Verify Receiver Certificate’

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

[Authentication with Repeaters]

(STEP 3C-08-1)

- DUT reads invalid certificate of downstream pseudo-Sink

 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

 - If DUT transmit AKE_No_Stored_km or AKE_Stopped_km, then FAIL (Ref-1A-8)

(STEP 3C-08-2)

- TE (pseudo-Source) waits for DUT to transmit RepeaterAuth_Send_ReceiverID_List message for a maximum time of 3 seconds

 - If DUT transmits RepeaterAuth_Send_ReceiverID_List message, then FAIL (Ref-3C-5)
☐ If DUT treats invalid downstream certificate as an authentication failure and does not transmit RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
3C-09. Irregular Procedure – Invalid H’

Test Objective

Verify the Repeater DUT considers it a failure of authentication and does not send RepeaterAuth_Send_ReceiverID_List message when the Receiver provides a value for H’ that does not match H; or does not respond with H’ in the allotted time

Required Test Method

<Connection Setup>

Same as ‘3C-08 Irregular Procedure – Rx Certificate invalid’

<Configuration of TE (pseudo-Sink)>

Same as ‘1A-11 Irregular Procedure – Invalid H’

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

[Authentication with Repeaters]

Two test cases; both are performed

[Test Case 1 – Invalid H’]

(STEP 3C-09-1)

- DUT reads invalid H’ of downstream pseudo-Sink
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
 - If DUT transmits LC_Init, then FAIL (Ref-1A-8)

[Test Case 2 – AKE_Send_H_prime timeout after AKE_Stored_km]

(STEP 3C-09-2)

- TE (pseudo-Sink) does not provide AKE_Send_H_prime message within 200 ms timeout at the DUT
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)
 - If DUT transmits LC_Init, then FAIL (Ref-1A-8)
[Both Test Cases]

(STEP 3C-09-3)

☐ TE (pseudo-Source) waits for DUT to transmit RepeaterAuth_Send_ReceiverID_List message for a maximum time of 3 seconds

➢ If DUT transmits RepeaterAuth_Send_ReceiverID_List message, then FAIL (Ref-3C-5)

☐ If DUT treats invalid downstream H’ or timeout of AKE_Send_H_prime as an authentication failure and does not transmit RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
3C-10. Irregular Procedure – Locality Failure

Test Objective

Verify the Repeater DUT considers it a failure of authentication and does not send RepeaterAuth_Send_ReceiverID_List message when the Receiver provides a value for L’ that does not match L; or does not respond with L’ in the allotted time.

Required Test Method

<Connection Setup>

Same as ‘3C-08 Irregular Procedure – Rx Certificate invalid’

<Configuration of TE (pseudo-Sink)>

Same as ‘1A-13 Irregular Procedure – Locality Failure’

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

[Authentication with Repeaters]

Two test cases; both are performed

[Test Case 1 – Invalid L’]

(STEP 3C-10-1)

- DUT reads invalid L’ of downstream pseudo-Sink
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

[Test Case 2 – LC_Send_L_prime message timeout]

(STEP 3C-10-2)

- TE (pseudo-Sink) does not provide LC_Send_L_prime message within 20 ms timeout at the DUT
 - If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

[Both Test Cases]
(STEP 3C-10-3)

☐ TE (pseudo-Source) waits for DUT to transmit RepeaterAuth_Send_ReceiverID_List message for a maximum time of 3 seconds

➢ If DUT transmits RepeaterAuth_Send_ReceiverID_List message, then FAIL (Ref-3C-5)

☐ If DUT treats invalid downstream L’ or timeout of LC_Send_L_prime as an authentication failure and does not transmit RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
Repeater (DUT) Connected to Transmitter (TE pseudo-Source) and Repeater (TE pseudo-Repeater)

In this test, an HDCP Transmitter (TE pseudo-Source) is connected to the upstream HDCP-protected Interface Port of the Repeater DUT. An HDCP Repeater (TE pseudo-Repeater) is connected to the downstream HDCP-protected Interface Port of the Repeater (DUT).
3C-11. Regular Procedure – Transmitter – DUT – Repeater (With stored km)

Test Objective

Verify the Repeater DUT’s implementation of the HDCP Protocol when an HDCP Transmitter is connected to the upstream Repeater port and an HDCP Repeater is connected to the downstream Repeater port.

Required Test Method

<Connection Setup>

☐ Connect TE (pseudo-Source) to the upstream HDCP-protected Interface Port of DUT

☐ Connect an HDCP Repeater and HDCP Sink to the downstream HDCP-protected Interface Port of DUT

Note: Devices that have already passed the compliance test are used as the Repeater and Sink devices

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed, with the following changes:

[Authentication with Repeaters]

(STEP 3C-01-1)

☐ DUT transmits RepeaterAuth_Send_ReceiverID_List message

➢ If DUT does not transmit RepeaterAuth_Send_ReceiverID_List message within 3 second timeout of SKE_Send_Eks, then FAIL(Ref-1B-2)

➢ If RepeaterAuth_Send_ReceiverID_List:MAX_DEVS_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)

➢ If RepeaterAuth_Send_ReceiverID_List:MAX_CASCADE_EXCEEDED is ‘TRUE’, then FAIL(Ref-3C-1)

➢ If RepeaterAuth_Send_ReceiverID_List:DEPTH is not two, then FAIL(Ref-3C-2)
If RepeaterAuth_Send_ReceiverID_List:DEVICE_COUNT is not two, then FAIL (Ref-3C-2)

If RepeaterAuth_Send_ReceiverID_List:HDCP2_0_REPEATER_DOWNSTREAM is ‘TRUE’, then FAIL

If RepeaterAuth_Send_ReceiverID_List:HDCP1_DEVICE_DOWNSTREAM is ‘TRUE’, then FAIL

If DUT does not propagate the correct format of Receiver ID’s found in RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-5)

(STEP 3C-01-2) as described in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ is performed

☐ If DUT completes the authentication process successfully, then PASS
3C-12. Regular Procedure – Receiver disconnect after AKE_Init

Test Objective

Verify the Repeater DUT propagates Receiver Disconnect and Receiver Connect Indication on Repeater disconnect and connect, respectively.

Required Test Method

<Connection Setup>

- Connect TE (pseudo-Source) to the upstream HDCP-protected Interface Port of DUT
- Connect TE (pseudo-Repeater) to the downstream HDCP-protected Interface Port of DUT

<Configuration of TE (pseudo-Repeater)>

<table>
<thead>
<tr>
<th>Authentication and Key Exchange</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AKE_Send_Cert</td>
<td>RxCaps:REPEATER</td>
</tr>
<tr>
<td></td>
<td>RxCaps:VERSION</td>
</tr>
<tr>
<td></td>
<td>rx</td>
</tr>
<tr>
<td></td>
<td>certrx</td>
</tr>
<tr>
<td></td>
<td>AKE_Send_H_prime</td>
</tr>
<tr>
<td>Pairing</td>
<td>AKE_Send_Pairing_Info</td>
</tr>
<tr>
<td>Locality Check</td>
<td>LC_Send_L_prime</td>
</tr>
<tr>
<td>Authentication with Repeater</td>
<td>RepeaterAuth_Send_ReceiverID_List</td>
</tr>
<tr>
<td></td>
<td>RxInfo:MAX_CASCADE_EXCEEDED</td>
</tr>
<tr>
<td></td>
<td>RxInfo:HDCP2_0_REPEATER_DOWNSTREAM</td>
</tr>
<tr>
<td></td>
<td>RxInfo:HDCP1_DEVICE_DOWNSTREAM</td>
</tr>
<tr>
<td></td>
<td>RxInfo:DEVICE_COUNT</td>
</tr>
</tbody>
</table>
RxInfo: DEPTH 3
Receiver ID List (DEVICE_COUNT * 5) bytes
seq_num_V Valid
V' 16 bytes, Valid (within 3 second timeout)

<Test Case>

The steps described under [Before Starting Authentication] to [Authentication and Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed

[Authentication and Key Exchange]

STEP 3C-12-1

- **☐ TE (pseudo-Repeater) de-asserts HDCP_HPD after AKE_Init message**
- **☐ DUT sends de-asserted HDCP_HPD to upstream TE (pseudo-Source)**
 - **➢ If DUT does not send de-asserted HDCP_HPD to TE (pseudo-Source), then FAIL (Ref-3C-4)**

STEP 3C-12-2

- **☐ TE (pseudo-Repeater) asserts HDCP_HPD**
- **☐ DUT sends asserted HDCP_HPD to upstream TE (pseudo-Source)**
 - **➢ If DUT does not send asserted HDCP_HPD to TE (pseudo-Source), then FAIL (Ref-3C-4)**

STEP 3C-12-3

- **☐ TE (pseudo-Source) restarts Authentication and Key Exchange with DUT**
- **☐ DUT restarts Authentication and Key Exchange with downstream TE (pseudo-Repeater)**
 - **➢ If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then FAIL (Ref-1A-7)**
 - **➢ If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)**
If DUT propagates de-asserted HDCP_HPD and asserted HDCP_HPD on Repeater disconnect and connect respectively, then PASS
3C-13. Regular Procedure – Receiver disconnect after k_m

Test Objective

Verify the Repeater DUT restarts authentication after the Repeater is disconnected and reconnected following the exchange of k_m.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Test Case>

The steps described under [Before Starting Authentication] to [Authentication and Key Exchange] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed

[Authentication and Key Exchange]

(STEP 3C-13-1)

- TE (pseudo-Repeater) de-asserts HDCP_HPD after AKE_Stored_km or AKE_No_Stored_km message
- DUT sends de-asserted HDCP_HPD to upstream TE (pseudo-Source)
 - If DUT does not send de-asserted HDCP_HPD to TE (pseudo-Source), then FAIL (Ref-3C-4)

(STEP 3C-13-2)

- TE (pseudo-Repeater) asserts HDCP_HPD
- DUT sends asserted HDCP_HPD to upstream TE (pseudo-Source)
 - If DUT does not send asserted HDCP_HPD to TE (pseudo-Source), then FAIL (Ref-3C-4)

(STEP 3C-13-3)

- TE (pseudo-Source) restarts Authentication and Key Exchange with DUT
DUT restarts Authentication and Key Exchange with downstream TE (pseudo-Repeater)

- If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then FAIL (Ref-1A-7)

- If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

If DUT propagates de-asserted HDCP_HPD and asserted HDCP_HPD on Repeater disconnect and connect respectively, then PASS
3C-14. **Regular Procedure – Receiver disconnect after locality check**

Test Objective

Verify the Repeater DUT restarts authentication after the Repeater is disconnected and reconnected after locality check is initiated.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Test Case>

The steps described under [Before Starting Authentication] to [Locality Check] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed

[Locality Check]

(STEP 3C-14-1)

- TE (pseudo-Repeater) de-asserts HDCP_HPD after LC_Init message
- DUT sends de-asserted HDCP_HPD to upstream TE (pseudo-Source)
 - If DUT does not send de-asserted HDCP_HPD to TE (pseudo-Source), then FAIL (Ref-3C-4)

(STEP 3C-14-2)

- TE (pseudo-Repeater) asserts HDCP_HPD
- DUT sends asserted HDCP_HPD to upstream TE (pseudo-Source)
 - If DUT does not send asserted HDCP_HPD to TE (pseudo-Source), then FAIL (Ref-3C-4)

(STEP 3C-14-3)

- TE (pseudo-Source) restarts Authentication and Key Exchange with DUT
- DUT restarts Authentication and Key Exchange with downstream TE (pseudo-Repeater)
If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then FAIL (Ref-1A-7)

If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

If DUT propagates de-asserted HDCP_HPD and asserted HDCP_HPD on Repeater disconnect and connect respectively, then PASS
3C-15. **Regular Procedure – Receiver disconnect after \(k_s \)**

Test Objective

Verify the Repeater DUT restarts authentication after the Repeater is disconnected and reconnected following the exchange of \(k_s \).

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Test Case>

The steps described under [Before Starting Authentication] through [Locality Check] in ‘3C-01 Regular Procedure – Transmitter – DUT – Receiver’ are performed.

[Session Key Exchange]

STEP 3C-15-1

- TE (pseudo-Repeater) de-asserts HDCP_HPD after SKE_Send_Eks message
- DUT sends de-asserted HDCP_HPD to upstream TE (pseudo-Source)
 - If DUT does not send de-asserted HDCP_HPD to TE (pseudo-Source), then FAIL (Ref-3C-4)

STEP 3C-15-2

- TE (pseudo-Repeater) asserts HDCP_HPD
- DUT sends asserted HDCP_HPD to upstream TE (pseudo-Source)
 - If DUT does not send asserted HDCP_HPD to TE (pseudo-Source), then FAIL (Ref-3C-4)

STEP 3C-15-3

- TE (pseudo-Source) restarts Authentication and Key Exchange with DUT
- DUT restarts Authentication and Key Exchange with downstream TE (pseudo-Repeater)
If DUT does not restart Authentication and Key Exchange and complete (STEP 1A-01-2) as described in ‘1A-01 Regular Procedure – With previously connected Receiver (With stored km)’, then FAIL (Ref-1A-7)

If DUT enables HDCP Encryption, then FAIL (Ref-1A-2)

☑ If DUT propagates de-asserted HDCP_HPD and asserted HDCP_HPD on Repeater disconnect and connect respectively, then PASS
3C-16. Irregular Procedure – Timeout of Receiver ID list

Test Objective

Verify the Repeater DUT considers it a failure of authentication and does not send RepeaterAuth_Send_ReceiverID_List message when the downstream repeater fails to provide RepeaterAuth_Send_ReceiverID_List message prior to expiration of the watchdog timer.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-12 Regular Procedure – Transmitter – DUT – Repeater (With stored km)’ are performed

[Authentication with Repeaters]

(STEP 3C-16-1)

☐ DUT waits maximum of 3 seconds for downstream TE (pseudo-Repeater) to send RepeaterAuth_Send_ReceiverID_List

(STEP 3C-16-2)

☐ DUT disables HDCP encryption, if enabled, after the expiration of the three second timer

➤ If DUT disables encryption before the timer expires, then FAIL (Ref-1B-2)

➤ If DUT does not disable encryption after the timer expires, then FAIL (Ref-1B-2)

➤ If DUT sends RepeaterAuth_Send_Ack message, then FAIL (Ref-1B-2)

(STEP 3C-16-3)

☐ DUT does not transmit RepeaterAuth_Send_ReceiverID_List to TE (pseudo-Source)

➤ If DUT transmits RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-5)
If DUT treats timeout of watchdog timer for RepeaterAuth_Send_ReceiverID_List from downstream TE pseudo-Repeater as an authentication failure and does not transmit RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source) and does not transmit RepeaterAuth_Send_Ack to downstream TE (pseudo-Repeater), then PASS.
3C-17. Irregular Procedure – Verify V’

Test Objective

Verify the Repeater DUT considers it a failure of authentication and does not send RepeaterAuth_Send_ReceiverID_List message when the downstream repeater provides a value for V’ that does not match V.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘1B-03 Irregular Procedure – Verify V’’

<Test Case>

Same as ‘1B-03 Irregular Procedure – Verify V’’

[Authentication with Repeaters]

(STEP 3C-17-1)

- DUT does not transmit RepeaterAuth_Send_ReceiverID_List to TE (pseudo-Source)
 - If DUT transmits RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-5)

- If DUT treats the mismatch of V and invalid V’ from downstream TE pseudo-Repeater as an authentication failure and does not transmit RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source) and does not transmit RepeaterAuth_Send_Ack to downstream TE (pseudo-Repeater), then PASS
3C-18. Irregular Procedure – DEVICE_COUNT

Test Objective

Verify the Repeater DUT asserts MAX_DEVS_EXCEEDED bit in RepeaterAuth_Send_ReceiverID_List message if the computed DEVICE_COUNT exceeds 31.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’ except for the following change:

- TE (pseudo-Repeater) sets DEVICE_COUNT = 31

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-12 Regular Procedure – Transmitter – DUT – Repeater (With stored km)’ are performed

[Authentication with Repeaters]

(STEP 3C-18-1)

- TE (pseudo-Repeater) sends RepeaterAuth_Send_ReceiverID_List
- DUT disables HDCP encryption, if enabled, after computing DEVICE_COUNT

 - If DUT disables encryption before TE (pseudo-Repeater) transmits RepeaterAuth_Send_ReceiverID_List message, then FAIL (Ref-3C-1)

 - If DUT does not disable encryption after computing DEVICE_COUNT, then FAIL (Ref-3C-1)

(STEP 3C-18-2)

- DUT sets MAX_DEVS_EXCEEDED flag and transmits RepeaterAuth_Send_ReceiverID_List to TE (pseudo-source)

 - If DUT does not transmit RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-1)
➢ If MAX_DEVS_EXCEEDED is ‘FALSE’, then FAIL (Ref-3C-1)

☐ If DUT considers it an authentication failure when topology maximums are exceeded and signals MAX_DEVS_EXCEEDED error in RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
3C-19. Irregular Procedure – DEPTH

Test Objective

Verify the Repeater DUT asserts MAX_CASCADE_EXCEEDED bit in RepeaterAuth_Send_ReceiverID_List message if the computed DEPTH for it exceeds four.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’ except for the following change:

- TE (pseudo-Repeater) sets DEPTH = 4

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-12 Regular Procedure – Transmitter – DUT – Repeater (With stored km)’ are performed

[Authentication with Repeaters]

(STEP 3C-19-1)

- TE (pseudo-Repeater) sends RepeaterAuth_Send_ReceiverID_List
- DUT disables HDCP encryption, if enabled, after computing DEPTH
 - If DUT disables encryption before TE (pseudo-Repeater) transmits RepeaterAuth_Send_ReceiverID_List message, then FAIL (Ref-3C-1)
 - If DUT does not disable encryption after computing DEPTH, then FAIL (Ref-3C-1)

(STEP 3C-19-2)

- DUT sets MAX_CASCADE_EXCEEDED flag and transmits RepeaterAuth_Send_ReceiverID_List to TE (pseudo-source)
 - If DUT does not transmit RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-1)
 - If MAX_CASCADE_EXCEEDED is ‘FALSE’, then FAIL (Ref-3C-1)
☐ If DUT considers it an authentication failure when topology maximums are exceeded and signals MAX_CASCADE_EXCEEDED error in RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source), then PASS
3C-20. Irregular Procedure – MAX_DEVS_EXCEEDED

Test Objective

Verify the Repeater DUT asserts MAX_DEVS_EXCEEDED bit in RepeaterAuth_Send_ReceiverID_List message when it receives a MAX_DEVS_EXCEEDED status from the downstream pseudo-Repeater.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘1B-04 Irregular Procedure – MAX_DEVICES_EXCEEDED’

<Test Case>

Same as ‘1B-04 Irregular Procedure – MAX_DEVICES_EXCEEDED’

[Authentication with Repeaters]

(STEP 3C-20-1)

☐ DUT sets MAX_DEVS_EXCEEDED flag and transmits RepeaterAuth_Send_ReceiverID_List to TE (pseudo-source)

➢ If DUT does not transmit RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-1)

➢ If MAX_DEVS_EXCEEDED is ‘FALSE’, then FAIL (Ref-3C-1)

☐ If DUT treats the reception of MAX_DEVS_EXCEEDED from downstream TE pseudo-Repeater as an authentication failure and signals MAX_DEVS_EXCEEDED error in RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source) and does not transmit RepeaterAuth_Send_Ack to downstream TE (pseudo-Repeater), then PASS
3C-21. Irregular Procedure – MAX_CASCADE_EXCEEDED

Test Objective

Verify the Repeater DUT asserts MAX_CASCADE_EXCEEDED bit in RepeaterAuth_Send_ReceiverID_List message when it receives a MAX_CASCADE_EXCEEDED status from the downstream pseudo-Repeater.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘1B-05 Irregular Procedure – MAX_CASCADE_EXCEEDED’

<Test Case>

Same as ‘1B-05 Irregular Procedure – MAX_CASCADE_EXCEEDED’

[Authentication with Repeaters]

(STEP 3C-21-1)

☐ DUT sets MAX_CASCADE_EXCEEDED flag and transmits RepeaterAuth_Send_ReceiverID_List to TE (pseudo-source)

➢ If DUT does not transmit RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-1)

➢ If MAX_CASCADE_EXCEEDED is ‘FALSE’, then FAIL (Ref-3C-1)

☐ If DUT treats the reception of MAX_CASCADE_EXCEEDED from downstream TE pseudo-Repeater as an authentication failure and signals MAX_CASCADE_EXCEEDED error in RepeaterAuth_Send_ReceiverID_List to the upstream TE (pseudo-Source) and does not transmit RepeaterAuth_Send_Ack to downstream TE (pseudo-Repeater), then PASS
3C-22. Regular Procedure – Repeater with zero downstream device

Test Objective

Verify the Repeater DUT having no downstream devices either do the authentication with upstream as a Receiver or does not do the authentication.

Required Test Method

<Connection Setup>

- Connect TE (pseudo-Source) to the upstream HDCP-protected Interface Port of DUT

![Diagram]

- TE (pseudo-Source) → HDCP Interface → DUT (Repeater)

<Test Case>

DUT (Repeater) should follow either one of two possible cases.

[Test Case 1: No authentication]

(STEP 3C-22-1)

- DUT de-asserts HDCP_HP to TE (pseudo-Source)
 - If DUT asserts HDCP_HP to TE, then FAIL (Ref-3C-6)
 - If DUT keeps de-asserting HDCP_HP so that TE (pseudo-Source) does not start authentication, then PASS (Ref-3C-6)

[Test Case 2: Authentication as a Receiver]

(STEP 3C-22-2)

- DUT asserts HDCP_HP to TE (pseudo-Source)
 - DUT performs authentication as a Receiver instead of a Repeater (Ref-3C-6)
 - If DUT follows the steps specified in “2C-01 Regular Procedure – with transmitter”, then PASS. Otherwise, FAIL
3C-23. Regular Procedure – Propagation of HDCP_2_0_REPEATER_DOWNSTREAM flag

Test Objective

Verify the Repeater DUT propagates the HDCP_2_0_REPEATER_DOWNSTREAM flag upstream when provided by the downstream repeater in RepeaterAuth_Send_ReceiverID_list message.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’ except for the following change:

- TE (pseudo-Repeater) sets HDCP2_0_REPEATER_DOWNSTREAM to ‘1’

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-11 Regular Procedure – Transmitter – DUT – Repeater (With stored km)’ are performed

[Authentication with Repeaters]

STEP 3C-23-1

- TE (pseudo-Repeater) sends RepeaterAuth_Send_ReceiverID_List

STEP 3C-23-2

- DUT transmits RepeaterAuth_Send_ReceiverID_List to TE (pseudo-Source)
 - If DUT does not transmit RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-5)
 - If DUT does not report HDCP2_0_REPEATER_DOWNSTREAM = 1 in RepeaterAuth_Send_ReceiverID_list, then FAIL (Ref-3C-8)
 - If DUT propagates downstream indication of HDCP2_0_REPEATER_DOWNSTREAM status to upstream TE (pseudo-Source) as part of RepeaterAuth_Send_ReceiverID_List, then PASS
3C-24. Regular Procedure – Propagation of HDCP1DEVICE_DOWNSTREAM flag

Test Objective

Verify the Repeater DUT propagates the HDCP1DEVICE_DOWNSTREAM flag upstream when provided by the downstream repeater in RepeaterAuth_Send_ReceiverID_list message.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’ except for the following change:

☐ TE (pseudo-Repeater) sets HDCP1DEVICE_DOWNSTREAM to ‘1’

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-11 Regular Procedure – Transmitter – DUT – Repeater (With stored km)’ are performed

[Authentication with Repeaters]

(STEP 3C-24-1)

☐ TE (pseudo-Repeater) sends RepeaterAuth_Send_ReceiverID_List

(STEP 3C-24-2)

☐ DUT transmits RepeaterAuth_Send_ReceiverID_List to TE (pseudo-Source)

➤ If DUT does not transmit RepeaterAuth_Send_ReceiverID_List, then FAIL (Ref-3C-5)

➤ If DUT does not report HDCP1DEVICE_DOWNSTREAM = 1 in RepeaterAuth_Send_ReceiverID_list, then FAIL (Ref-3C-8)

☐ If DUT propagates downstream indication of HDCP1DEVICE_DOWNSTREAM status to upstream TE (pseudo-Source) as part of RepeaterAuth_Send_ReceiverID_List, then PASS
3C-25. Regular Procedure – Content Stream Management

Test Objective

Verify the Repeater DUT propagates the Content Stream Management function as determined by the upstream source.

Required Test Method

<Connection Setup>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Configuration of TE (pseudo-Repeater)>

Same as ‘3C-12 Regular Procedure – Receiver disconnect after AKE_Init’

<Test Case>

The steps described under [Before Starting Authentication] to [Session Key Exchange] in ‘3C-11 Regular Procedure – Transmitter – DUT – Repeater (With stored km)’ are performed

(STEP 3C-25-1)

☐ TE (pseudo-Source) sends RepeaterAuth_Stream_Manage message

(STEP 3C-25-2)

☐ DUT transmits RepeaterAuth_Stream_Ready message within 100ms

- If DUT does not transmit RepeaterAuth_Stream_Ready message within 100 ms, then FAIL (Ref-1B-5)

- If M’ provided in RepeaterAuth_Stream_Ready message does not match TE’s calculation of M, then FAIL (Ref-1B-5)

(STEP 3C-25-3)

☐ DUT sends RepeaterAuth_Stream_Manage message to TE (pseudo-Repeater)

- If DUT does not transmit RepeaterAuth_Stream_Manage message at least 100 ms before transmitting the corresponding Content Stream, then FAIL (Ref-1B-5)

[Three test cases; all are performed]

[Test case 1 – Valid M’]
(STEP 3C-25-4)

☐ TE responds with RepeaterAuth_Stream_Ready message within 100 ms with valid M’

☐ DUT transmits stream

➤ If DUT does not transmit stream referenced in RepeaterAuth_Stream_Manage message, then FAIL (Ref-1B-5)

➤ If DUT transmits Content Stream earlier than 100 ms after transmission of RepeaterAuth_Stream_Manage message, then FAIL (Ref-1B-5)

[Test case 2 –Invalid M’]

(STEP 3C-25-5)

☐ TE responds with RepeaterAuth_Stream_Ready message within 100 ms with invalid M’

☐ DUT does not transmit stream

➤ If DUT transmits stream referenced in RepeaterAuth_Stream_Manage message, then FAIL (Ref-1B-5)

[Test case 3 –Timeout of RepeaterAuth_Stream_Ready message]

(STEP 3C-25-6)

☐ TE does not respond with RepeaterAuth_Stream_Ready message within 100 ms

☐ DUT does not transmit stream

➤ If DUT transmits stream referenced in RepeaterAuth_Stream_Manage message, then FAIL (Ref-1B-5)

☐ If DUT properly responds to confirmation or failure of RepeaterAuth_Stream_Ready message, then PASS
4. Reference

Refer to the High-bandwidth Digital Content Protection System on HDMI Specification, Revision 2.3.

Ref-1A. Downstream procedure with Receiver

Ref-1A-1

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8 HDCP Transmitter State Diagram Page 25</td>
<td>Transmitter’s decision to begin authentication is dependent on events such as HDCP_HPD (HDCP Hot Plug Detect) of an attached HDCP Receiver, completion of certain phases of the operating system, a software request, and mode settings. When an HDCP Receiver acknowledges a read of the HDCP2Version register, it must be ready to authenticate, and, in the event of authentication failure, must be prepared to process subsequent authentication attempts. The HDCP Transmitter should not attempt to authenticate until it has successfully obtained an acknowledged read of the HDCP2Version register. Should the HDCP2Version register read or the authentication fail, the HDCP Transmitter must retry periodically, with a period of no more than 2 seconds (preferably much more often). It may cease to attempt authentication only if the HDCP Receiver is clearly disconnected, as with HDCP_HPD = “Low”.</td>
</tr>
</tbody>
</table>

Ref-1A-2

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>State H1: Transmit Low-value Content Page 27</td>
<td>State H1: Transmit Low-value Content. In this state, the transmitter reads the HDCP2Version register. The transmitter determines that the receiver is HDCP 2 capable by reading bit[2] in the receiver’s HDCP2Version register. If this bit is set to 1, it indicates that the receiver is HDCP 2 capable. In this state the transmitter should begin sending an unencrypted signal with HDCP Encryption disabled. The transmitted signal can be a low value content or informative on-screen display. This will ensure that a valid video signal is displayed to the user before and during authentication.</td>
</tr>
<tr>
<td>State A5: Authenticated Page 29</td>
<td>State A5: Authenticated. At this time, and at no time prior, the HDCP Transmitter has completed the authentication protocol. A periodic Link Synchronization is performed to maintain cipher synchronization between HDCP Transmitter and HDCP Receiver.</td>
</tr>
</tbody>
</table>

Ref-1A-3

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>State A1:</td>
<td>State A1: Exchange K_m. In this state, the HDCP Transmitter initiates</td>
</tr>
</tbody>
</table>
Exchange k_m authentication by writing AKE_Init message to the HDCP Receiver. It reads AKE_Send_Cert from the receiver within 100ms after writing the AKE_Init message.

If the HDCP Transmitter does not have k_m stored corresponding to the Receiver ID, it generates $E_{k_{pub}}(km)$ and sends $E_{k_{pub}}(km)$ as part of the AKE_No_Stored_km message to the receiver after verification of signature on $cert_{rx}$. It performs integrity check on the SRM and checks to see whether the Receiver ID of the connected HDCP Device is in the revocation list. It computes H, reads AKE_Send_H_prime message from the receiver containing H' within one second after writing AKE_No_Stored_km to the receiver and compares H' against H.

If the HDCP Transmitter has k_m stored corresponding to the Receiver ID, it writes AKE_Stored_km message containing $E_{k_{h}}(km)$ and m to the receiver, performs integrity check on the SRM, checks to see whether the Receiver ID of the connected HDCP Device is in the revocation list. It computes H, reads AKE_Send_H_prime message from the receiver containing H' within 200 ms after sending AKE_Stored_km to the receiver and compares H' against H.

If the HDCP Transmitter does not have a k_m stored corresponding to the Receiver ID, it implements pairing with the HDCP receiver as explained in Section 2.2.1.

Ref-1A-4

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Pairing</td>
<td>To speed up the AKE process, pairing must be implemented between the HDCP Transmitter and HDCP Receiver in parallel with AKE. When AKE_No_Stored_km message is received from the transmitter, it is an indication to the receiver that the transmitter does not have k_m stored corresponding to the receiver. In this case, after computing H', the HDCP Receiver:</td>
</tr>
<tr>
<td>Page 15</td>
<td>- Computes 128-bit $k_h = SHA-256(k_{priv_{rx}})[127:0]$.</td>
</tr>
<tr>
<td></td>
<td>- Generates 128-bit $E_{k_{h}}(km)$ by encrypting k_m with k_h using AES as illustrated in Figure 2.3.</td>
</tr>
<tr>
<td></td>
<td>- Makes the AKE_Send_Pairing_Info message containing the 128-bit $E_{k_{h}}(km)$ available for the transmitter to read. This message must be available for the transmitter to read within 200ms from the time the transmitter begins reading the AKE_Send_H_prime message parameters from the HDCP Receiver.</td>
</tr>
<tr>
<td></td>
<td>If AKE_Send_Pairing_Info is not available for transmitter to read within 200 ms</td>
</tr>
</tbody>
</table>
of the reception of AKE_Send_H_prime, authentication fails and the authentication protocol is aborted. On reading AKE_Send_Pairing_Info message, the HDCP Transmitter may persistently store m (which is \(r_{tx} \) concatenated with \(r_{tx} \mid r_{rx} \)), \(k_m \) and \(E_{kh}(k_m) \) along with Receiver ID.

Note: The HDCP Transmitter may store in its non-volatile storage \(m \), \(k_m \), and \(E_{kh}(k_m) \) along with corresponding Receiver IDs of all HDCP Receivers with which pairing was implemented by the HDCP Transmitter.

Ref-1A-5

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 Locality Check</td>
<td>Locality check is performed after AKE and pairing. The HDCP Transmitter</td>
</tr>
<tr>
<td>Page 16</td>
<td>initiates locality check by sending a 64-bit pseudo-random nonce (r_n) to</td>
</tr>
<tr>
<td></td>
<td>the downstream receiver. The HDCP Transmitter</td>
</tr>
<tr>
<td></td>
<td>- Initiates locality check by sending LC_Init message containing a 64-bit</td>
</tr>
<tr>
<td></td>
<td>pseudo-random nonce (r_n) to the HDCP Receiver.</td>
</tr>
<tr>
<td></td>
<td>- Sets its watchdog timer to 20 ms. The LC_Send_L_prime message must be</td>
</tr>
<tr>
<td></td>
<td>received by the transmitter within 20ms from the time the transmitter</td>
</tr>
<tr>
<td></td>
<td>finishes writing the LC_Init message parameters to the HDCP Receiver.</td>
</tr>
<tr>
<td></td>
<td>Locality check fails if the watchdog timer expires before the last byte of</td>
</tr>
<tr>
<td></td>
<td>the LC_Send_L_prime message is received by the transmitter. The transmitter</td>
</tr>
<tr>
<td></td>
<td>then aborts the authentication protocol.</td>
</tr>
<tr>
<td></td>
<td>- Computes (L = HMAC_{SHA256}(r_n, k_d \oplus r_{rx})) where HMAC_{SHA256}</td>
</tr>
<tr>
<td></td>
<td>is computed over (r_n) and the key used for HMAC is (k_d \oplus r_{rx}),</td>
</tr>
<tr>
<td></td>
<td>where (r_{rx}) is XORed with the least-significant 64-bits of (k_d.)</td>
</tr>
<tr>
<td></td>
<td>- On reading LC_Send_L_prime message from the receiver, compares (L)</td>
</tr>
<tr>
<td></td>
<td>and (L'). Locality check fails if (L) is not equal to (L').</td>
</tr>
</tbody>
</table>

State A2: Locality Check

Page 28

State A2: Locality Check. In this state, the HDCP Transmitter implements the locality check as explained in Section 2.3 with the HDCP Receiver.

Ref-1A-6

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 Session Key Exchange</td>
<td>Successful completion of AKE and locality check states affirms to HDCP</td>
</tr>
<tr>
<td>Page 17</td>
<td>Transmitter that the HDCP Receiver is authorized to receive HDCP Content.</td>
</tr>
<tr>
<td></td>
<td>Session Key Exchange (SKE) is initiated by the HDCP Transmitter after a</td>
</tr>
<tr>
<td></td>
<td>successful locality check. The HDCP Transmitter sends encrypted session key</td>
</tr>
</tbody>
</table>
to the HDCP Receiver at least 200ms before enabling HDCP encryption and beginning the transmission of HDCP content. HDCP encryption may be enabled 200ms after the transmission of the encrypted Session key to the HDCP Receiver and at no time prior. Content encrypted with the session key k_s starts to flow between the HDCP Transmitter and HDCP Receiver. HDCP Encryption must be enabled only after successful completion of AKE, locality check and SKE stages.

During SKE, the HDCP Transmitter

- Generates a pseudo-random 128-bit session key k_s and 64-bit pseudo-random number r_{rx}.
- Performs key derivation as explained in Section 2.7 to generate 128-bit $dkey_2$ where $dkey_2$ is the derived key when $ctr=2$.
- Computes 128-bit $E_{dkey}(k_s) = k_s \ XOR (dkey_2 \ XOR r_{rx})$, where r_{rx} is XORed with the least-significant 64-bits of $dkey_2$.
- Writes SKE_Send_Eks message containing $E_{dkey}(k_s)$ and r_{rx} to the HDCP Receiver.

State A3: Exchange k_s

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Any State: H0.</td>
<td>Transition Any State: H0. Reset conditions at the HDCP Transmitter or loss of HDCP_HPD cause the HDCP Transmitter to enter the No Receiver Attached State.</td>
</tr>
</tbody>
</table>

Transition H0:H1.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition A1:A0</td>
<td>Transition A1:A0. This transition occurs on failure of signature verification on $cert_{rx}$, failure of SRM integrity check, if Receiver ID of the connected HDCP Device is in the revocation list or if there is a mismatch between H and H'. This transition also occurs if AKE_Send_H_prime message is not received within one second after writing AKE_No_Stored_km or within 200 ms after sending</td>
</tr>
</tbody>
</table>
AKE/Stored_km to the receiver.

Transition A1:A2 Page 28
Transition A1:A2. The HDCP Transmitter implements locality check after successful completion of AKE and pairing.

Ref-1A-9

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 Locality Check Page 17</td>
<td>In the case of a locality check failure due to expiration of the watchdog timer or due to mismatch of L and L’ at the HDCP Transmitter, locality check may be reattempted by the HDCP Transmitter for a maximum of 1023 additional attempts (for a maximum allowed 1024 total trials) with the transmission of an LC_Init message containing a new r_n. Failure of locality check on the first attempt and subsequent zero or more reattempts results in an authentication failure and the authentication protocol is aborted.</td>
</tr>
</tbody>
</table>

Transition A2: A0 Page 28
Transition A2:A0. This transition occurs on one or more consecutive locality check failures. Locality check fails when the last byte of the LC_Send_L_prime message is not received by the transmitter within 20 ms and the watchdog timer at the HDCP Transmitter expires or on a mismatch between L and L’.

Ref-1A-10

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errata to HDCP on HDMI Specification Rev. 2.2 Pg. 53</td>
<td>It is required that no Data Island or Video Data, nor any Guard Band, be transmitted during a keep-out period that starts 508 TMDS character clocks past the active edge of VSYNC and ends 650 TMDS character clocks past the active edge of VSYNC.</td>
</tr>
</tbody>
</table>

Ref-1B. Downstream procedure with Repeater

Ref-1B-1.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition A7:A8. Page 29</td>
<td>Transition A7:A8. This transition occurs on successful verification of the most significant 128-bits of V and V’, none of the reported Receiver IDs are in the current revocation list, the HDCP Transmitter does not detect a roll-over of seq_num_V and the downstream topology does not exceed specified maximums.</td>
</tr>
<tr>
<td>Transition A8:A5</td>
<td>Transition A8:A5. This transition occurs after the RepeaterAuth_Send_Ack</td>
</tr>
</tbody>
</table>
message has been written to the repeater and the transmitter has already transmitted Content Stream Management information to the attached HDCP Repeater.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5 Authentication with Repeaters Page 19-20</td>
<td>After transmitting the SKE_Send_Eks message, the HDCP Transmitter, having determined that REPEATER received earlier in the protocol is set, sets a three second watchdog timer and polls the HDCP Repeater’s READY status bit and if it’s set, along with a non-zero Message_Size, reads the RepeaterAuth_Send_ReceiverID_List message. If the asserted READY status is not received by the HDCP Transmitter within a maximum-permitted time of three seconds after transmitting SKE_Send_Eks message, authentication of the HDCP Repeater fails. With this failure, the HDCP Transmitter disables HDCP Encryption and aborts the authentication protocol with the HDCP Repeater. When READY is set, the HDCP Transmitter reads the RepeaterAuth_Send_ReceiverID_List message. The HDCP Repeater makes available the most significant 128-bits of (V') for the transmitter to read as part of the RepeaterAuth_Send_ReceiverID_List message. Whenever the HDCP Transmitter reads the RepeaterAuth_Send_ReceiverID_List message, it verifies the integrity of the Receiver ID list by computing (V) and comparing the most significant 128-bits of (V) and (V'). If the values do not match, authentication fails, the authentication protocol is aborted and HDCP Encryption is disabled. On successful verification of Receiver ID list and topology information, i.e. if the values match, none of the reported Receiver IDs are in the current revocation list (in the case of the most upstream HDCP Transmitter), the HDCP Transmitter does not detect a roll-over of seq_num_V, the downstream topology does not exceed specified maximums (explained below), the HDCP Transmitter (including downstream port of HDCP Repeater) writes the least significant 128-bits of (V) to the HDCP Repeater as part of the RepeaterAuth_Send_Ack message. Every RepeaterAuth_Send_ReceiverID_List message from the repeater to the transmitter must be followed by a RepeaterAuth_Send_Ack message from the transmitter to repeater on successful verification of Receiver ID list and topology information by the transmitter.</td>
</tr>
<tr>
<td>Transition A6:A0 Page 29</td>
<td>Transition A6:A0. The watchdog timer expires before the READY (for RepeaterAuth_Send_ReceiverID_List) has been asserted by the repeater.</td>
</tr>
</tbody>
</table>
Ref-1B-3.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5 Authentication with Repeaters Page 21</td>
<td>HDCP Repeaters must be capable of supporting DEVICE_COUNT values of up to 31 and DEPTH values of up to 4. If the computed DEVICE_COUNT for an HDCP Repeater exceeds 31, the error is referred to as MAX_DEVS_EXCEEDED error. The repeater sets MAX_DEVS_EXCEEDED bit to one in the RepeaterAuth_Send_ReceiverID_List message. If the computed DEPTH for an HDCP Repeater exceeds four, the error is referred to as MAX_CASCADE_EXCEEDED error. The repeater sets MAX_CASCADE_EXCEEDED bit to one in the RepeaterAuth_Send_ReceiverID_List message. When an HDCP Repeater receives a MAX_DEVS_EXCEEDED or a MAX_CASCADE_EXCEEDED error from a downstream HDCP Repeater, it must propagate the error to the upstream HDCP Transmitter and assert the READY bit. If a transmitter receives these errors, it must not read the most significant 128-bits of (V'), Receiver ID list and (\text{seq}_\text{num}_V) from the HDCP Repeater since the HDCP Repeater will not include these fields in the RepeaterAuth_Send_ReceiverID_List message. Authentication fails if the topology maximums are exceeded. HDCP Encryption is disabled and the authentication protocol is aborted.</td>
</tr>
</tbody>
</table>

| Transition A7:A0 Page 29 | Transition A7:A0. This transition is made if a mismatch occurs between the most significant 128-bits of \(V \) and \(V' \). This transition is also made if any of the Receiver IDs in the Receiver ID list are found in the current revocation list or if the HDCP Transmitter detects a roll-over of \(\text{seq}_\text{num}_V \). A MAX_CASCADE_EXCEEDED or MAX_DEVS_EXCEEDED error also causes this transition. |

Ref-1B-4.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5 Authentication with Repeaters Page 19-20</td>
<td>After transmitting the SKE_Send_Eks message, the HDCP Transmitter, having determined that REPEATER received earlier in the protocol is set, sets a three second watchdog timer and polls the HDCP Repeater’s READY status bit and if it’s set, along with a non-zero Message_Size, reads the RepeaterAuth_Send_ReceiverID_List message. If the asserted READY status is not received by the HDCP Transmitter within a maximum-permitted time of three seconds after transmitting SKE_Send_Eks message, authentication of the HDCP Repeater fails. With this failure, the HDCP Transmitter disables HDCP Encryption and aborts the authentication protocol with the HDCP Repeater. When READY is set, the HDCP Transmitter reads the</td>
</tr>
</tbody>
</table>
RepeaterAuth_Send_ReceiverID_List message. The HDCP Repeater makes available the most significant 128-bits of V' for the transmitter to read as part of the RepeaterAuth_Send_ReceiverID_List message.

Whenever the HDCP Transmitter reads the RepeaterAuth_Send_ReceiverID_List message, it verifies the integrity of the Receiver ID list by computing V and comparing the most significant 128-bits of V and V'. If the values do not match, authentication fails, the authentication protocol is aborted and HDCP Encryption is disabled.

On successful verification of Receiver ID list and topology information, i.e. if the values match, none of the reported Receiver IDs are in the current revocation list (in the case of the most upstream HDCP Transmitter), the HDCP Transmitter does not detect a roll-over of seq_num_V, the downstream topology does not exceed specified maximums (explained below), the HDCP Transmitter (including downstream port of HDCP Repeater) writes the least significant 128-bits of V to the HDCP Repeater as part of the RepeaterAuth_Send_Ack message. Every RepeaterAuth_Send_ReceiverID_List message from the repeater to the transmitter must be followed by a RepeaterAuth_Send_Ack message from the transmitter to repeater on successful verification of Receiver ID list and topology information by the transmitter.

Transition A7: A8

Transition A7: A8. This transition occurs on successful verification of the most significant 128-bits of V and V', none of the reported Receiver IDs are in the current revocation list, the HDCP Transmitter does not detect a roll-over of seq_num_V and the downstream topology does not exceed specified maximums.

Ref-1B-5.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5.2 Downstream Propagation of Content Stream Management Information Page 23</td>
<td>The HDCP Transmitter propagates Content Stream management information, which includes Type value assigned to the Content Stream, using the RepeaterAuth_Stream_Manage message to the attached HDCP Repeater. The HDCP Transmitter executes this step after successful completion of Session Key Exchange and before beginning the transmission of a Content Stream after HDCP Encryption to the HDCP Repeater. The RepeaterAuth_Stream_Manage message from an HDCP Transmitter to the attached HDCP Repeater identifies any restriction, as specified by the Upstream Content Control Function, on the transmission of the Content Stream to specific devices. A Type value is assigned to the Content Stream by the most upstream HDCP</td>
</tr>
</tbody>
</table>
Transmitter based on instructions received from the Upstream Content Control Function. The exact mechanism used by the Upstream Content Control Function to instruct the HDCP Transmitter is outside the scope of this specification. Type 0 Content Stream (see Section 4.2.12) may be transmitted by the HDCP Repeater to all HDCP Devices. Type 1 Content Stream (see Section 4.2.12) must not be transmitted by the HDCP Repeater through its HDCP-protected Interface Ports connected to HDCP 1.x-compliant Devices and HDCP 2.0-compliant Repeaters.

The HDCP Transmitter must write the RepeaterAuth_Stream_Manage message specifying Type value assigned to the Content Stream, to the attached HDCP Repeater at least 100ms before the transmission of the corresponding Content Stream after HDCP Encryption. The HDCP Transmitter must only send the RepeaterAuth_Stream_Manage message corresponding to the encrypted Content Stream it will transmit to the HDCP Repeater. The HDCP Transmitter initializes seq_num_M to 0 at the beginning of the HDCP Session i.e. after AKE_Init is sent.

On receiving the RepeaterAuth_Stream_Manage message, the HDCP Repeater computes M' as given below. HMAC-SHA256 is computed over the concatenation of StreamID_Type (see Section 4.2.12) and seq_num_M values received as part of the RepeaterAuth_Stream_Manage message. All values are in big-endian order. The key used for HMAC is SHA256(kd).

The RepeaterAuth_Stream_Manage message must be available for the transmitter to read within 100ms from the time the transmitter finishes writing the RepeaterAuth_Stream_Manage message parameters to the HDCP Receiver. Every RepeaterAuth_Stream_Manage message from the transmitter to the repeater must be followed by a RepeaterAuth_Stream_Ready message from the repeater to the transmitter.

When the RepeaterAuth_Stream_Ready message is read, the HDCP Transmitter verifies the integrity of the message by computing M and comparing this value to M'. If M is equal to M', the HDCP Transmitter may transmit the Content Stream identified in the corresponding RepeaterAuth_Stream_Manage message. If the RepeaterAuth_Stream_Ready message is not available for the transmitter to read within 100 ms or if M is not equal to M', the HDCP Transmitter must not transmit the Content Stream identified in the corresponding RepeaterAuth_Stream_Manage message.

An HDCP Repeater connected to an HDCP 1.x-compliant Transmitter will not receive the RepeaterAuth_Stream_Manage message from the transmitter. In this case, the HDCP Repeater must assign a Type value of 0x00 to all Content
| Streams received from the HDCP Transmitter.
The HDCP Repeater must in turn propagate the received Content Stream management information using the RepeaterAuth_Stream_Manage message further downstream. |
Ref-2. Receiver

Ref-2C. Upstream procedure with Transmitter

Ref-2C-1.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Any State:H0 Page 27</td>
<td>Transition Any State:H0. Reset conditions at the HDCP Transmitter or loss of HDCP_HPD cause the HDCP Transmitter to enter the No Receiver Attached state.</td>
</tr>
<tr>
<td>Transition H0:H1 Page 27</td>
<td>Transition H0:H1. The detection of a sink device (through HDCP_HPD) indicates to the transmitter that a sink device is connected and ready to display the received content.</td>
</tr>
</tbody>
</table>

Ref-2C-2.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
</table>
| State B1:Compute k_m Page 31 | **State B1: Compute k_m.** In this state, the HDCP Receiver makes AKE_Send_Cert message available for reading by the transmitter in response to AKE_Init. If AKE_No_Stored_km is received, it decrypts k_m with kpriv_rx, calculates H'. It sends AKE_Send_H_prime message immediately after computation of H' to ensure that the message is received by the transmitter within the specified one second timeout at the transmitter.

If AKE_Stored_km is received, the HDCP Receiver decrypts $E_{kh}(k_m)$ to derive k_m and calculates H'. It makes AKE_Send_H_prime message available for reading immediately after computation of H' to ensure that the message is received by the transmitter within the specified 200 ms timeout at the transmitter.

If AKE_No_Stored_km is received, this is an indication to the HDCP Receiver that the HDCP Transmitter does not contain a k_m stored corresponding to its Receiver ID. It implements pairing with the HDCP Transmitter as explained in Section 2.2.1. |

| Transition H0:H1 Page 27 | **Transition H0:H1.** The detection of a sink device (through HDCP_HPD) indicates to the transmitter that a sink device is connected and ready to display the received content. |

Ref-2C-3.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.2 Authentication and Key Exchange Page 13</td>
<td>Reads AKE_Send_Cert from the receiver containing cert_rx, a 64-bit pseudo-random value (r_x) and RxCaps. REPEATER bit in RxCaps indicates whether the connected receiver is an HDCP Repeater. If REPEATER is set to one, it indicates the receiver is an HDCP Repeater. If REPEATER is zero, the receiver is not an</td>
</tr>
</tbody>
</table>
HDCP Repeater.

Section 4.2.2 AKE_Send_Cert (Read) Page 58
When REPEATER is set to one, this HDCP Receiver supports downstream connections as permitted by the Digital Content Protection LLC license. This bit does not change while the HDCP Receiver is active.

Ref-2C-4.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>State A2: Locality Check Page 28</td>
<td>State A2: Locality Check. In this state, the HDCP Transmitter implements the locality check as explained in Section 2.3 with the HDCP Receiver.</td>
</tr>
<tr>
<td>Transition A2:A0 Page 28</td>
<td>Transition A2:A0. This transition occurs on one or more consecutive locality check failures. Locality check fails when the last byte of the LC_Send_L_prime message is not received by the transmitter within 20 ms and the watchdog timer at the HDCP Transmitter expires or on a mismatch between L and L’.</td>
</tr>
</tbody>
</table>

Ref-2C-5.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
</table>
| Errata to HDCP on HDMI Specification Rev. 2.2 Appendix E. Test Vectors | **E. 1 Facsimile Keys**
Note: the facsimile keys provided must be used ONLY for test purposes |
| rrx | 3b a0 be de 0c 46 a9 91 e1 7a b0 fd 0f 54 40 52 |

Ref-2C-6.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13 Random Number Generation Pg. 45</td>
<td>The minimum entropy requirement for random values that are not used as secret key material (i.e. rtx, rrx , riv ,rn) is 40 random bits out of 64-bits. This means that a reasonable level of variability or entropy is established if out of 1,000,000 random (rtx,rrx , riv or rn) values collected after the first authentication attempt (i.e. after power-up cycles on the HDCP Transmitter or HDCP Receiver logic), the probability of there being any duplicates in this list of 1,000,000 random values is less than 50%.</td>
</tr>
</tbody>
</table>
Ref-3 Repeaters

Ref-3C Upstream Procedure with Transmitter

Ref-3C-1

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5 Authentication with Repeaters Page 21</td>
<td>HDCP Repeaters must be capable of supporting DEVICE_COUNT values of up to 31 and DEPTH values of up to 4. If the computed DEVICE_COUNT for an HDCP Repeater exceeds 31, the error is referred to as MAX_DEVS_EXCEEDED error. The repeater sets MAX_DEVS_EXCEEDED bit to one in the RepeaterAuth_Send_ReceiverID_List message. If the computed DEPTH for an HDCP Repeater exceeds four, the error is referred to as MAX_CASCADE_EXCEEDED error. The repeater sets MAX_CASCADE_EXCEEDED bit to one in the RepeaterAuth_Send_ReceiverID_List message. When an HDCP Repeater receives a MAX_DEVS_EXCEEDED or a MAX_CASCADE_EXCEEDED error from a downstream HDCP Repeater, it must propagate the error to the upstream HDCP Transmitter and assert the READY bit. If a transmitter receives these errors, it must not read the most significant 128-bits of V', Receiver ID list and seq_num_V from the HDCP Repeater since the HDCP Repeater will not include these fields in the RepeaterAuth_Send_ReceiverID_List message.</td>
</tr>
</tbody>
</table>

Ref-3C-2

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5 Authentication with Repeaters Page 20</td>
<td>The HDCP Repeater propagates topology information upward through the connection tree to the HDCP Transmitter. An HDCP Repeater reports the topology status variables DEVICE_COUNT, and DEPTH. The DEVICE_COUNT for an HDCP Repeater is equal to the total number of connected downstream HDCP Receiver and HDCP Repeaters. The value is calculated as the sum of the number of directly connected downstream HDCP Receiver and HDCP Repeaters plus the sum of the DEVICE_COUNT received from all connected HDCP Repeaters. The DEPTH status for an HDCP Repeater is equal to the maximum number of connection levels below any of the downstream HDCP-protected Interface Ports. The value is calculated as the maximum DEPTH reported from downstream HDCP Repeaters plus one (accounting for the connected HDCP Repeater).</td>
</tr>
</tbody>
</table>
When an HDCP Receiver (including HDCP Repeater) is newly connected to the HDCP Repeater and the HDCP Repeater has already completed the authentication protocol with the upstream HDCP Transmitter, the HDCP Repeater must make the RepeaterAuth_Send_ReceiverID_List message available for the upstream HDCP Transmitter to read, assert the READY status bit and set the Message_Size register to the size of the RepeaterAuth_Send_ReceiverID_List message. The RepeaterAuth_Send_ReceiverID_List message must include the Receiver IDs of all connected and active downstream HDCP Receivers with which the HDCP Repeater has successfully completed the authentication protocol.

An HDCP Repeater, which receives the RepeaterAuth_Send_ReceiverID_List message from a downstream HDCP Repeater, must propagate the message further upstream. This enables upstream propagation of the most recent topology information after changes to the topology without interrupting the transmission of HDCP Content.

This stage is implemented after successful completion of Session Key Exchange. This stage is used to assemble the latest topology information at the beginning of the HDCP Session immediately following an SKE or on subsequent changes to the topology due to connect or disconnect of an HDCP Receiver or HDCP Repeater.

The HDCP Repeater signals the first detection of an active downstream HDCP Receiver to the upstream HDCP Transmitter by pulsing (pulse width must be greater than 100ms) the physical Hot Plug Detect signal of the upstream HDCP-protected Interface Port, or, for devices providing HDMI support for CP&EDID_HPD as specified in the HDMI1.4 specification, by signaling HDCP_HPD to the upstream connected HDCP Transmitter. Once in the authenticated state with one or more downstream HDCP Receivers, subsequent detection by the HDCP Repeater of additional newly active downstream HDCP Receivers is handled as specified in Section 2.5.1.

Whenever authentication is initiated by the upstream HDCP Transmitter by sending AKE_Init, the HDCP Repeater immediately initiates authentication on all its downstream HDCP-protected interface ports if its downstream ports are
in an unauthenticated state.

Ref-3C-5

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5.1 Upstream Propagation of Topology Information Page 18</td>
<td>HDCP Repeaters assemble the list of all connected downstream HDCP Receivers as the downstream HDCP-protected Interface Ports of the HDCP Repeater successfully complete the authentication protocol with connected HDCP Receivers. The list is represented by a contiguous set of bytes, with each Receiver ID occupying five bytes stored in big-endian order. The total length of the Receiver ID list is five bytes times the total number of connected and active downstream HDCP Devices, including downstream HDCP Repeaters, with which the HDCP Repeater has successfully completed the authentication protocol. This total number is represented in the RepeaterAuth_Send_ReceiverID list message by the DEVICE_COUNT value. An HDCP-protected Interface Port with no active device connected adds nothing to the list. Also, the Receiver ID of the HDCP Repeater itself at any level is not included in its own Receiver ID list. An HDCP-protected Interface Port connected to an HDCP Receiver that is not an HDCP Repeater adds the Receiver ID of the connected HDCP Receiver to the list. HDCP-protected Interface Ports that have an HDCP Repeater connected add the Receiver ID list received from the connected downstream HDCP Repeater, plus the Receiver ID of the connected downstream HDCP Repeater itself.</td>
</tr>
</tbody>
</table>

Transition F1:F0 Page 36	Transition F1:F0. This transition occurs on failure of signature verification on certrx or if there is a mismatch between H and H'. This transition also occurs if AKE_Send_H_prime message is not received one second after sending AKE_No_Stored_km or within 200 ms after sending AKE_Stored_km to the receiver.
Transition F2:F0 Page 36	Transition F2:F0. This transition occurs on one or more consecutive locality check failures. Locality check fails when the last byte of the LC_Send_L_prime message is not received by the transmitter within 20 ms and the watchdog timer at the downstream side expires or on a mismatch between L and L'.
Transition F6:F0 Page 37	Transition F6:F0. The watchdog timer expires before READY has been asserted by the repeater.
Transition F7:F0 Page 37	Transition F7:F0. This transition is made if a mismatch occurs between the most significant 128-bits of V and V'. This transition is also made if the downstream side detects a roll-over of seq_num_V. A MAX CASCADE EXCEEDED or MAX DEVS EXCEEDED error also causes this transition.
Ref-3C-6

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.10 HDCP Repeater State Diagrams Page 33</td>
<td>If an HDCP Repeater has no active downstream HDCP Devices, it must authenticate as an HDCP Receiver with REPEATER bit set to zero if it wishes to receive HDCP Content, but must not pass HDCP Content to downstream devices</td>
</tr>
</tbody>
</table>

Ref-3C-7

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.5.1 Upstream Propagation of Topology Information Page 19</td>
<td>The HDCP Repeater initializes $seq_{num}V$ to 0 at the beginning of the HDCP Session i.e. after AKE_Init is received. It is incremented by one after the transmission of every RepeaterAuth_Send_ReceiverID_List message. $seq{num}V$ must never be reused during an HDCP Session for the computation of V (or V'). If $seq{num}_V$ rolls over, the HDCP Transmitter must detect the roll-over in the RepeaterAuth_Send_ReceiverID_List read from the HDCP Repeater and the transmitter must disable HDCP Encryption if encryption is enabled, restart authentication by the transmission of a new AKE_Init message</td>
</tr>
</tbody>
</table>

Ref-3C-8

<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>State C5: Assemble Receiver ID List Page 40</td>
<td>If any downstream port connected to an HDCP Repeater detects the HDCP2_0_REPEATER_DOWNSTREAM or HDCP1_DEVICE_DOWNSTREAM bits read from the repeater to be set to one, the upstream side sets the corresponding bits to one in the RxInfo field which is read by the upstream HDCP Transmitter as part of the RepeaterAuth_Send_ReceiverID_List message</td>
</tr>
</tbody>
</table>